Revolutionizing the Early Detection of Alzheimer’s Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning
Abstract
:1. Shedding Light on Alzheimer’s Disease: The Current Situation and What We Know So Far
2. Need for Early Diagnosis of AD—The Non-Invasive Perspective
3. Cutting-Edge Studies for Early-Onset AD through Non-Invasive Techniques
3.1. Wearable Devices for Digital Biomarkers
3.2. Sensors-Based Biomarkers
3.3. Blood-Based Biomarkers for AD-Related Brain Changes
3.4. Bio-Sensors for Biofluid Marker Detection in AD
3.5. PET and MRI Data for Imaging Biomarkers
3.6. Sensors for Oculomotor Functions
3.7. Sensors for Movement, Speech, and Language Functions
3.8. Sensors for Autonomic Nervous System Functions
4. Recent Advances in Non-Invasive AD Diagnosis Using DL and ML Techniques
5. The Role of AI and DL as Novel Insights in AD Monitoring
5.1. The Potential of Explainable AI Perspective
5.2. The Potential of Deep Learning Perspective
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tahami Monfared, A.A.; Byrnes, M.J.; White, L.A.; Zhang, Q. Alzheimer’s disease: Epidemiology and clinical progression. Neurol. Ther. 2022, 11, 553–569. [Google Scholar] [CrossRef]
- Ng, W.Y.; Cheung, C.Y.; Milea, D.; Ting, D.S.W. Artificial intelligence and machine learning for Alzheimer’s disease: Let’s not forget about the retina. Br. J. Ophthalmol. 2021, 105, 593–594. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. 2023 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2023, 19, 1598–1695. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.S.; Al Mamun, A.; Rahman, M.; Behl, T.; Perveen, A.; Hafeez, A.; Bin-Jumah, M.N.; Abdel-Daim, M.M.; Ashraf, G.M. Emerging proof of protein misfolding and interactions in multifactorial Alzheimer’s disease. Curr. Top. Med. Chem. 2020, 20, 2380–2390. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.K.; Lee, Y.R.; Ong, L.; Gold, M.; Kalali, A.; Sarkar, J. Alzheimer’s disease: Key insights from two decades of clinical trial failures. J. Alzheimer’s Dis. 2022, 87, 83–100. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Timmers, M.; Tesseur, I.; Bogert, J.; Zetterberg, H.; Blennow, K.; Börjesson-Hanson, A.; Baquero, M.; Boada, M.; Randolph, C.; Tritsmans, L.; et al. Relevance of the interplay between amyloid and tau for cognitive impairment in early Alzheimer’s disease. Neurobiol. Aging 2019, 79, 131–141. [Google Scholar] [CrossRef]
- Peña-Bautista, C.; Álvarez-Sánchez, L.; Pascual, R.; Moreno, M.J.; Baquero, M.; Cháfer-Pericás, C. Clinical usefulness of cerebrospinal fluid biomarkers in Alzheimer’s disease. Eur. J. Clin. Investig. 2022, 53, e13910. [Google Scholar] [CrossRef]
- Janeiro, M.H.; Ardanaz, C.G.; Sola-Sevilla, N.; Dong, J.; Cortés-Erice, M.; Solas, M.; Puerta, E.; Ramírez, M.J. Biomarkers in Alzheimer’s disease. Adv. Lab. Med./Av. Med. Lab. 2020, 2, 27–37. [Google Scholar] [CrossRef]
- Omar, S.H.; Preddy, J. Advantages and pitfalls in fluid biomarkers for diagnosis of Alzheimer’s disease. J. Pers. Med. 2020, 10, 63. [Google Scholar] [CrossRef]
- Bature, F.; Pappas, Y.; Pang, D.; Guinn, B.A. Can Non-invasive Biomarkers Lead to an Earlier Diagnosis of Alzheimer’s Disease? Curr. Alzheimer Res. 2021, 18, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.; Ramakrishnan, V. Invasive and non-invasive therapies for Alzheimer’s disease and other amyloidosis. Biophys. Rev. 2020, 12, 1175–1186. [Google Scholar] [CrossRef]
- Schillaci, O.; Urbano, N. Digital PET/CT: A new intriguing chance for clinical nuclear medicine and personalized molecular imaging. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1222–1225. [Google Scholar] [CrossRef]
- Klyucherev, T.O.; Olszewski, P.; Shalimova, A.A.; Chubarev, V.N.; Tarasov, V.V.; Attwood, M.M.; Syvänen, S.; Schiöth, H.B. Advances in the development of new biomarkers for Alzheimer’s disease. Transl. Neurodegener. 2022, 11, 25. [Google Scholar] [CrossRef]
- Teixeira, E.; Fonseca, H.; Diniz-Sousa, F.; Veras, L.; Boppre, G.; Oliveira, J.; Pinto, D.; Alves, A.J.; Barbosa, A.; Mendes, R.; et al. Wearable devices for physical activity and healthcare monitoring in elderly people: A critical review. Geriatrics 2021, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Tarnanas, I.; Rapp, Z. TD-P-019: Pre-clinical (Alzheimer’s) diagnosis (PCD) by tracking micro errors during complex activities of daily living: A digital biomarker. Alzheimer’s Dement. 2018, 14, P194–P195. [Google Scholar] [CrossRef]
- Kourtis, L.C.; Regele, O.B.; Wright, J.M.; Jones, G.B. Digital biomarkers for Alzheimer’s disease: The mobile/wearable devices opportunity. NPJ Digit. Med. 2019, 2, 9. [Google Scholar] [CrossRef]
- Buegler, M.; Harms, R.L.; Balasa, M.; Meier, I.B.; Exarchos, T.; Rai, L.; Boyle, R.; Tort, A.; Kozori, M.; Lazarou, E.; et al. Digital biomarker-based individualized prognosis for people at risk of dementia. Alzheimer’s Dement.: Diagn. Assess. Dis. Monit. 2020, 12, e12073. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, C.; Koychev, I.; Blane, J.; Chinner, A.; Chatham, C.; Taylor, K.; Hinds, C. Gallery Game: Smartphone-based assessment of long-term memory in adults at risk of Alzheimer’s disease. J. Clin. Exp. Neuropsychol. 2020, 42, 329–343. [Google Scholar] [CrossRef]
- Opwonya, J.; Doan, D.N.T.; Kim, S.G.; Kim, J.I.; Ku, B.; Kim, S.; Park, S.; Kim, J.U. Saccadic eye movement in mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Neuropsychol. Rev. 2022, 32, 193–227. [Google Scholar] [CrossRef]
- Haider, F.; De La Fuente Garcia, S.; Albert, P.; Luz, S. Affective speech for Alzheimer’s dementia recognition. In Proceedings of the LREC: Resources and Processing of Linguistic, Para-Linguistic and Extra-Linguistic Data from People with Various forms of Cognitive/Psychiatric/Developmental Impairments (RaPID), Marseille, France, 11–16 May 2020; pp. 67–73. [Google Scholar]
- Hu, S.; Yang, C.; Luo, H. Current trends in blood biomarker detection and imaging for Alzheimer’s disease. Biosens. Bioelectron. 2022, 210, 114278. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.X.; Martins, R.; Rowe, C.; et al. High-performance plasma amyloid-b biomarkers for Alzheimer’s disease. Nature 2018, 554, 249–254. [Google Scholar] [CrossRef]
- Park, J.E.; Gunasekaran, T.I.; Cho, Y.H.; Choi, S.M.; Song, M.K.; Cho, S.H.; Kim, J.; Song, H.C.; Choi, K.Y.; Lee, J.J.; et al. Diagnostic Blood Biomarkers in Alzheimer’s Disease. Biomedicines 2022, 10, 169. [Google Scholar] [CrossRef]
- Tatebe, H.; Kasai, T.; Ohmichi, T.; Kishi, Y.; Kakeya, T.; Waragai, M.; Kondo, M.; Allsop, D.; Tokuda, T. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: Pilot case-control studies including patients with Alzheimer’s disease and Down syndrome. Mol Neurodegener. 2017, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Pase, M.P.; Beiser, A.S.; Himali, J.J.; Satizabal, C.L.; Aparicio, H.J.; DeCarli, C.; Chêne, G.; Dufouil, C.; Seshadri, S. Assessment of plasma total tau level as a predictive biomarker for dementia and related endophenotypes. JAMA Neurol. 2019, 76, 598–606. [Google Scholar] [CrossRef]
- Moscoso, A.; Grothe, M.J.; Ashton, N.J.; Karikari, T.K.; Rodríguez, J.L.; Snellman, A.; Suárez-Calvet, M.; Blennow, K.; Zetterberg, H.; Schöll, M.; et al. Longitudinal associations of blood phosphorylated Tau181 and neurofilament light chain with neurodegeneration in Alzheimer disease. JAMA Neurol. 2021, 78, 396–406. [Google Scholar] [CrossRef]
- Murti, B.T.; Putri, A.D.; Huang, Y.J.; Wei, S.M.; Peng, C.W.; Yang, P.K. Clinically oriented Alzheimer’s biosensors: Expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv. 2021, 11, 20403–20422. [Google Scholar] [CrossRef] [PubMed]
- Le, H.T.N.; Park, J.; Cho, S. A probeless capacitive biosensor for direct detection of amyloid beta 1-42 in human serum based on an interdigitated chain-shaped electrode. Micromachines 2020, 11, 791. [Google Scholar] [CrossRef]
- Negahdary, M.; Heli, H. An ultrasensitive electrochemical aptasensor for early diagnosis of Alzheimer’s disease, using a fern leaves-like gold nanostructure. Talanta 2019, 198, 510–517. [Google Scholar] [CrossRef]
- Qin, J.; Kim, S.; Cho, M.; Lee, Y. Hierarchical and ultra-sensitive amyloid beta oligomer sensor for practical applications. Chem. Eng. J. 2020, 401, 126055. [Google Scholar] [CrossRef]
- Zhang, Y.; Figueroa-Miranda, G.; Lyu, Z.; Zafiu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Monitoring amyloid-b proteins aggregation based on label-free aptasensor. Sens. Actuators B Chem. 2019, 288, 535–542. [Google Scholar] [CrossRef]
- Ranjan, P.; Khan, R. Electrochemical Immunosensor for Early Detection of b-Amyloid Alzheimer’s Disease Biomarker Based on Aligned Carbon Nanotubes Gold Nanocomposites. Biosensors 2022, 12, 1059. [Google Scholar] [CrossRef]
- Chae, M.S.; Yoo, Y.K.; Kim, J.; Kim, T.G.; Hwang, K.S. Graphene-based enzyme-modified field-effect transistor biosensor for monitoring drug effects in Alzheimer’s disease treatment. Sens. Actuators B Chem. 2018, 272, 448–458. [Google Scholar] [CrossRef]
- Congur, G.; Eksin, E.; Erdem, A. Impedimetric detection of miRNA-34a using graphene oxide modified chemically activated graphite electrodes. Sens. Actuators A Phys. 2018, 279, 493–500. [Google Scholar] [CrossRef]
- Islam, K.; Damiati, S.; Sethi, J.; Suhail, A.; Pan, G. Development of a label-free immunosensor for clusterin detection as an Alzheimer’s biomarker. Sensors 2018, 18, 308. [Google Scholar] [CrossRef]
- Razzino, C.A.; Serafín, V.; Gamella, M.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Calero, M.; Lobo, A.O.; Yáñez-Sedeño, P.; Campuzano, S.; et al. An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosens. Bioelectron. 2020, 163, 112238. [Google Scholar] [CrossRef]
- Dai, Y.; Chiu, L.Y.; Chen, Y.; Qin, S.; Wu, X.; Liu, C.C. Neutral charged immunosensor platform for protein-based biomarker analysis with enhanced sensitivity. ACS Sens. 2018, 4, 161–169. [Google Scholar] [CrossRef]
- Karaboga, M.N.S.; Sezgintürk, M.K. Analysis of Tau-441 protein in clinical samples using rGO/AuNP nanocomposite-supported disposable impedimetric neuro-biosensing platform: Towards Alzheimer’s disease detection. Talanta 2020, 219, 121257. [Google Scholar] [CrossRef]
- Shui, B.; Tao, D.; Cheng, J.; Mei, Y.; Jaffrezic-Renault, N.; Guo, Z. A novel electrochemical aptamer–antibody sandwich assay for the detection of tau-381 in human serum. Analyst 2018, 143, 3549–3554. [Google Scholar] [CrossRef] [PubMed]
- Krokidis, M.G.; Dimitrakopoulos, G.N.; Vrahatis, A.G.; Tzouvelekis, C.; Drakoulis, D.; Papavassileiou, F.; Exarchos, T.P.; Vlamos, P. A Sensor-Based Perspective in Early-Stage Parkinson’s Disease: Current State and the Need for Machine Learning Processes. Sensors 2022, 22, 409. [Google Scholar] [CrossRef] [PubMed]
- Del Sole, A.; Malaspina, S.; Biasina, A.M. Magnetic resonance imaging and positron emission tomography in the diagnosis of neurodegenerative dementias. Functional Neurology 2016, 31, 205. [Google Scholar] [CrossRef]
- Ding, Y.; Sohn, J.H.; Kawczynski, M.G.; Trivedi, H.; Harnish, R.; Jenkins, N.W.; Lituiev, D.; Copeland, T.P.; Aboian, M.S.; Mari Aparici, C.; et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology 2019, 290, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Yang, S.; Feng, Z.; Wang, M.; Ahmad, A.S.; Khan, R.; Maqsood, M.; Yaqub, M. A transfer learning approach for early diagnosis of Alzheimer’s disease on MRI images. Neuroscience 2021, 460, 43–52. [Google Scholar] [CrossRef]
- Guo, J.; Qiu, W.; Li, X.; Zhao, X.; Guo, N.; Li, Q. Predicting Alzheimer’s disease by hierarchical graph convolution from positron emission tomography imaging. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5359–5363. [Google Scholar]
- Nam, U.; Lee, K.; Ko, H.; Lee, J.Y.; Lee, E.C. Analyzing facial and eye movements to screen for Alzheimer’s disease. Sensors 2020, 20, 5349. [Google Scholar] [CrossRef] [PubMed]
- Staal, J.; Mattace-Raso, F.; Daniels, H.A.; Van der Steen, J.; Pel, J.J. To explore the predictive power of visuomotor network dysfunctions in mild cognitive impairment and Alzheimer’s disease. Front. Neurosci. 2021, 15, 654003. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, K.; Yamashita, T.; Fukui, Y.; Nomura, E.; Ohta, Y.; Ueno, S.; Nishina, S.; Tsunoda, K.; Wakutani, Y.; Takao, Y.; et al. Early detection of cognitive decline in mild cognitive impairment and Alzheimer’s disease with a novel eye tracking test. J. Neurol. Sci. 2021, 427, 117529. [Google Scholar] [CrossRef]
- Eraslan Boz, H.; Koçoğlu, K.; Akkoyun, M.; Tüfekci, I.Y.; Ekin, M.; Özçelik, P.; Akdal, G. The influence of stimulus eccentricity on prosaccade outcomes in patients with Alzheimer’s Disease dementia at an early stage and amnestic mild cognitive impairment. J. Clin. Exp. Neuropsychol. 2023, 44, 713–729. [Google Scholar] [CrossRef]
- Jonell, P.; Moëll, B.; Håkansson, K.; Henter, G.E.; Kucherenko, T.; Mikheeva, O.; Hagman, G.; Holleman, J.; Kivipelto, M.; Kjellström, H.; et al. Multimodal capture of patient behaviour for improved detection of early dementia: Clinical feasibility and preliminary results. Front. Comput. Sci. 2021, 3, 642633. [Google Scholar] [CrossRef]
- Bartoli, E.; Caso, F.; Magnani, G.; Baud-Bovy, G. Low-cost robotic assessment of visuo-motor deficits in Alzheimer’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 852–860. [Google Scholar] [CrossRef]
- Sciarrone, A.; Bisio, I.; Garibotto, C.; Lavagetto, F.; Gambari, G. NeuroGlasses: A wearable prototype for early detection of neurological symptoms. In Proceedings of the5th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 23–26 September 2020; pp. 1–6. [Google Scholar]
- Serra-Añó, P.; Pedrero-Sánchez, J.F.; Hurtado-Abellán, J.; Inglés, M.; Espí-López, G.V.; López-Pascual, J. Mobility assessment in people with Alzheimer disease using smartphone sensors. J. NeuroEng. Rehabil. 2019, 16, 103. [Google Scholar] [CrossRef]
- Suzumura, S.; Osawa, A.; Maeda, N.; Sano, Y.; Kandori, A.; Mizuguchi, T.; Yin, Y.; Kondo, I. Differences among patients with Alzheimer’s disease, older adults with mild cognitive impairment and healthy older adults in finger dexterity. Geriatr. Gerontol. Int. 2018, 18, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, F.; Popa, M.; Solachidis, V.; Hernandez-Penaloza, G.; Belmonte-Hernandez, A.; Asteriadis, S.; Vretos, N.; Quintana, M.; Theodoridis, T.; Dotti, D.; et al. Behavior Analysis through Multimodal Sensing for Care of Parkinson’s and Alzheimer’s Patients. IEEE MultiMedia 2018, 25, 14–25. [Google Scholar] [CrossRef]
- Fiorini, L.; Maselli, M.; Esposito, R.; Castro, E.; Mancioppi, G.; Cecchi, F.; Laschi, C.; Ottino, S.; Rossi, C.; Pinori, F.; et al. Foot inertial sensing for combined cognitive-motor exercise of the sustained attention domain. IEEE Trans. Biomed. Eng. 2019, 66, 2413–2420. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Harris, T.B.; Shiroma, E.J.; Leung, J.; Kwok, T. Patterns of physical activity and sedentary behavior for older adults with alzheimer’s disease, mild cognitive impairment, and cognitively normal in Hong Kong. J. Alzheimers Dis. 2018, 66, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, D.; Cardone, D.; Filippini, C.; Chiarelli, A.M.; Merla, A. Modelling impulse response function of functional infrared imaging for general linear model analysis of autonomic activity. Sensors 2019, 19, 849. [Google Scholar] [CrossRef]
- Patthy, Á.; Murai, J.; Hanics, J.; Pintér, A.; Zahola, P.; Hökfelt, T.G.; Harkany, T.; Alpár, A. Neuropathology of the brainstem to mechanistically understand and to treat Alzheimer’s disease. J. Clin. Med. 2021, 10, 1555. [Google Scholar] [CrossRef]
- Grässler, B.; Hökelmann, A.; Cabral, R.H. Resting Heart Rate Variability as A Possible Marker of Cognitive Decline: A Systematic Review. Kinesiology 2020, 52, 72–84. [Google Scholar] [CrossRef]
- Cazangiu, T.; Argatu, F.C.; Enache, B.A.; Vita, V.; Stavros, G. Device for monitoring people with Alzheimer’s disease. In Proceedings of the 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 1–3 November 2018; pp. 1–5. [Google Scholar]
- Liu, K.Y.; Elliott, T.; Knowles, M.; Howard, R. Heart rate variability in relation to cognition and behavior in neurodegenerative diseases: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 73, 101539. [Google Scholar] [CrossRef] [PubMed]
- Gwak, M.; Woo, E.; Sarrafzadeh, M. The role of PPG in identification of mild cognitive impairment. In Proceedings of the 12th ACM International Conference on Pervasive Technologies Related to Assistive Environments, Rhodes, Greece, 5–7 June 2019; pp. 32–35. [Google Scholar]
- Jeon, Y.; Kang, J.; Kim, B.C.; Lee, K.H.; Song, J.I.; Gwak, J. Early Alzheimer’s Disease Diagnosis using Wearable Sensors and Multilevel Gait Assessment: A Machine Learning Ensemble Approach. IEEE Sens. J. 2023. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, S.; Chen, H.; Wang, A. A new machine learning method for identifying Alzheimer’s disease. Simul. Model. Pract. Theory 2020, 99, 102023. [Google Scholar] [CrossRef]
- Feng, X.; Provenzano, F.A.; Small, S.A. A deep learning MRI approach outperforms other biomarkers of prodromal Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 1. [Google Scholar] [CrossRef]
- Papadaki, E.; Exarchos, T.; Vlamos, P.; Vrahatis, A. A Hybrid Deep Learning model for predicting the early Alzheimer’s Disease stages using MRI. In Proceedings of the 12th Hellenic Conference on Artificial Intelligence, Corfu, Greece, 7–9 September 2022; pp. 1–6. [Google Scholar]
- Tuan, T.A.; Pham, T.B.; Kim, J.Y.; Tavares, J.M.R. Alzheimer’s diagnosis using deep learning in segmenting and classifying 3D brain MR images. Int. J. Neurosci. 2022, 132, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Huseby, C.J.; Delvaux, E.; Brokaw, D.L.; Coleman, P.D. Blood Transcript Biomarkers Selected by Machine Learning Algorithm Classify Neurodegenerative Diseases including Alzheimer’s Disease. Biomolecules 2022, 12, 1592. [Google Scholar] [CrossRef]
- Ludwig, N.; Fehlmann, T.; Kern, F.; Gogol, M.; Maetzler, W.; Deutscher, S.; Gurlit, S.; Schulte, C.; Von Thaler, A.K.; Deuschle, C.; et al. A Machine learning to detect Alzheimer’s disease from circulating non-coding RNAs. Genom. Proteom. Bioinform. 2019, 17, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Chabrun, F.; Dieu, X.; Doudeau, N.; Gautier, J.; Luque-Paz, D.; Geneviève, F.; Ferré, M.; Mirebeau-Prunier, D.; Annweiler, C.; Reynier, P. Deep learning shows no morphological abnormalities in neutrophils in Alzheimer’s disease. Alzheimer's Dement. Diagn. Assess. Dis. Monit. 2021, 13, e12146. [Google Scholar] [CrossRef] [PubMed]
- Bahado-Singh, R.O.; Radhakrishna, U.; Gordevičius, J.; Aydas, B.; Yilmaz, A.; Jafar, F.; Imam, K.; Maddens, M.; Challapalli, K.; Metpally, R.P.; et al. Artificial intelligence and circulating cell-free DNA methylation profiling: Mechanism and detection of Alzheimer’s disease. Cells 2022, 11, 1744. [Google Scholar] [CrossRef] [PubMed]
- Sood, V.M.; Hitakshi, H.; Das, M.; Narang, S.K. Deep Learning Algorithms for Detecting Alzheimer’s Disease using WBSN. In Proceedings of the 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, India, 25–27 November 2022; pp. 478–483. [Google Scholar]
- Saif, N.; Yan, P.; Niotis, K.; Scheyer, O.; Rahman, A.; Berkowitz, M.; Krikorian, R.; Hristov, H.; Sadek, G.; Bellara, S.; et al. Feasibility of using a wearable biosensor device in patients at risk for Alzheimer’s disease dementia. J. Prev. Alzheimer’s Dis. 2020, 7, 104–111. [Google Scholar] [CrossRef]
- Zuo, F.; Jing, P.; Sun, J.; Ji, Y.; Liu, Y. Deep Learning-based Eye-Tracking Analysis for Diagnosis of Alzheimer’s Disease Using 3D Comprehensive Visual Stimuli. arXiv 2023, arXiv:2303.06868. [Google Scholar]
- Sharma, S.; Dudeja, R.K.; Aujla, G.S.; Bali, R.S.; Kumar, N. DeTrAs: Deep learning-based healthcare framework for IoT-based assistance of Alzheimer patients. Neural Comput. Appl. 2020, 1–13. [Google Scholar] [CrossRef]
- Eroglu, Y.; Yildirim, M.; Cinar, A. mRMR-based hybrid convolutional neural network model for classification of Alzheimer’s disease on brain magnetic resonance images. Int. J. Imaging Syst. Technol. 2022, 32, 517–527. [Google Scholar] [CrossRef]
- Puttagunta, M.; Ravi, S. Medical image analysis based on deep learning approach. Multimed. Tools Appl. 2021, 80, 24365–24398. [Google Scholar] [CrossRef]
- Delaby, C.; Hirtz, C.; Lehmann, S. Overview of the blood biomarkers in Alzheimer’s disease: Promises and challenges. Rev. Neurol. 2022, 3, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Bryan, R.N. Machine Learning Applied to Alzheimer Disease. Radiology 2016, 281, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Silva-Spínola, A.; Baldeiras, I.; Arrais, J.P.; Santana, I. The Road to Personalized Medicine in Alzheimer’s Disease: The Use of Artificial Intelligence. Biomedicines 2022, 10, 315. [Google Scholar] [CrossRef]
- Lombardi, A.; Tavares, J.M.R.S.; Tangaro, S. Editorial: Explainable Artificial Intelligence (XAI) in Systems Neuroscience. Front. Syst. Neurosci. 2021, 15, 766980. [Google Scholar] [CrossRef]
- Tohka, J.; Moradi, E.; Huttunen, H.; Initiative, A.D.N. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia. Neuroinformatics 2016, 14, 279–296. [Google Scholar] [CrossRef]
- Paplomatas, P.; Krokidis, M.G.; Vlamos, P.; Vrahatis, A.G. An Ensemble Feature Selection Approach for Analysis and Modeling of Transcriptome Data in Alzheimer’s Disease. Appl. Sci. 2023, 13, 2353. [Google Scholar] [CrossRef]
- Zhu, X.; Suk, H.I.; Shen, D. Multi-modality Canonical Feature Selection for Alzheimer’s Disease Diagnosis. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2014; Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 162–169. [Google Scholar]
- Shojaei, S.; Saniee Abadeh, M.; Momeni, Z. An evolutionary explainable deep learning approach for Alzheimer’s MRI classification. Expert Syst. Appl. 2023, 220, 119709. [Google Scholar] [CrossRef]
- Yu, L.; Xiang, W.; Fang, J.; Phoebe Chen, Y.P.; Zhu, R. A novel explainable neural network for Alzheimer’s disease diagnosis. Pattern Recognit. 2022, 131, 108876. [Google Scholar] [CrossRef]
- van der Velden, B.H.; Kuijf, H.J.; Gilhuijs, K.G.; Viergever, M.A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef] [PubMed]
Non-Invasive Approach | Targeting/Monitoring | Ref. |
---|---|---|
OpenSMILE v2.1 toolkit | Evaluation of acoustic features | [21] |
Immunoassay | p-tau181 detection | [25] |
Non-Faradaic platform, metallization between the protein and ferric ion in redox probe | Ab1-42 measurement in human serum | [29] |
Electrochemical aptasensor | Ab detection | [30] |
Gold electrode with gold dendrite and dendritic electropolymerized poly(pyrrole-3-carboxylic acid substrate) | immobilization of prion protein and the selective detection of Ab oligomers | [31] |
Label-free electrochemical bio-sensor including thiol-terminated ssDNA aptamer receptors, attached to gold electrodes | Ab oligomers recognition | [32] |
Electrochemical immunosensor platform using gold functionalized nanoparticle | detection of Ab peptides | [33] |
Graphene oxide-based field-effect transistor bio-sensor | acetylcholinesterase and acetylcholine monitoring | [34] |
Graphene oxide based single-use electrochemical Bio-sensor | detection of serum miRNA-34a | [35] |
Screen-printed carbon electrode modified with PBA acid NHS ester | electrochemical detection of clusterin | [36] |
Amperometric immunosensor/screen-printed carbon electrodes | tau measurement by implementing a sandwich immunoassay | [37] |
Neutral charged immunosensor | Tau measurement | [38] |
Bio-sensing platform consisting of indium tin gold electrode coated by PET | tau-441 measurement in serum | [39] |
Electrochemical aptamer-antibody sandwich assay | tau-381 measurement in serum | [40] |
F-FDG PET brain scans | a 48-layer deep convolutional neural network training | [43] |
MRI images with a pre-trained VGG convolutional neural network | distinguish between AD patients and normal controls, EMCI and LMCI | [44] |
PETNet, a graph-based convolutional neural network architecture | PET scan analysis | [45] |
Eye-hand tasks recorded with a head-mounted video infrared eye-tracking system | visuomotor network dysfunctions | [47] |
Eye-tracking tests | cognitive functions discrimination between controls, MCI, and AD patients | [48] |
System including smartphones, tablet, eye trackers, microphone array wristband | AD cognitive assessment through record data | [50] |
Low-cost robotic interface | oculomotor functions record in AD patients | [51] |
Eye-tracking glasses | head tremor and eye blink | [52] |
Smartphone sensors | AD mobility assessment | [53] |
Smart terminal device for screening finger function | records finger dexterity to facilitate the screening of MCI and AD | [54] |
System for body signals monitoring (heart rate and skin temperature) and motion location tracking | abnormal behavior in daily motion and gait abnormalities | [55] |
Foot-mounted wearable sensor-based device | correlation of aerobic activity along with traditional cognitive protocols | [56] |
Wrist-worn wearable accelerometer | sedentary behavior and bout | [57] |
Heart rate sensors using PPG technology | monitoring heart rates in AD patients | [61] |
Bio-sensing platform comprising a wristwatch, a wireless pulse oximeter, a PPG and gait sensors | discriminating symptoms of MCI and cognitively healthy subjects | [63] |
Origin of Non-Invasive Data | Technique | Computational Method | Ref |
---|---|---|---|
Wearable sensors | Gait Data | Elimination method-based ensemble and oversampling model | [64] |
Wearable IoT devices | Speech data | Multiple ML models | [65] |
Imaging | MRI | Convolutional Neural Network (3D CNN) | [66] |
Imaging | MRI | CNN and SVM | [67] |
Imaging | MRI | Combination of Gaussian Mixture Model (GMM), CNN for image segmentation, combination of Extreme Gradient Boosting (XGBoost) and SVM for classification | [68] |
Imaging | Neutrophil images | Deep Learning | [71] |
Imaging | MRI | Convolutional Neural Network | [77] |
Blood | Transcriptomics | Machine Learning | [69] |
Blood | small non-coding RNAs | Various machine learning approaches (support vector machines, decision trees, neural networks, gradient boosted trees) | [70] |
Blood | Circulating cfDNA (Methylation) | Deep Learning, SVM, Generalized Linear Model (GLM), Prediction Analysis for Microarrays (PAM), Random Forest (RF), and Linear Discriminant Analysis (LDA) | [72] |
Bio-sensors | Wireless Body Sensor Networks | Deep Learning algorithms for AD diagnosis | [73] |
Bio-sensors | Wearable bio-sensor device data | Un-supervised machine learning (Clustering) | [74] |
Sensors | Eye-Tracking | Deep Learning | [75] |
Sensors | Sensory movement data | Deep Learning | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrahatis, A.G.; Skolariki, K.; Krokidis, M.G.; Lazaros, K.; Exarchos, T.P.; Vlamos, P. Revolutionizing the Early Detection of Alzheimer’s Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning. Sensors 2023, 23, 4184. https://doi.org/10.3390/s23094184
Vrahatis AG, Skolariki K, Krokidis MG, Lazaros K, Exarchos TP, Vlamos P. Revolutionizing the Early Detection of Alzheimer’s Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning. Sensors. 2023; 23(9):4184. https://doi.org/10.3390/s23094184
Chicago/Turabian StyleVrahatis, Aristidis G., Konstantina Skolariki, Marios G. Krokidis, Konstantinos Lazaros, Themis P. Exarchos, and Panagiotis Vlamos. 2023. "Revolutionizing the Early Detection of Alzheimer’s Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning" Sensors 23, no. 9: 4184. https://doi.org/10.3390/s23094184
APA StyleVrahatis, A. G., Skolariki, K., Krokidis, M. G., Lazaros, K., Exarchos, T. P., & Vlamos, P. (2023). Revolutionizing the Early Detection of Alzheimer’s Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning. Sensors, 23(9), 4184. https://doi.org/10.3390/s23094184