Development of a Pavement-Embedded Piezoelectric Harvester in a Real Traffic Environment
Abstract
:1. Introduction
Objectives
2. Materials and Methods
3. Results
Truck Classification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Jasim, A.; Chen, X. Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- Sullivan, C.; de Bondt, A.; Jansen, R.; Verweijmeren, H. Innovation in the production and commercial use of energy extracted from asphalt pavement. In Proceedings of the 6th Annual International Conference on Sustainable Aggregates, International Journal of Pavement Engineering and Asphalt Technology, Liverpool, UK; 2007. [Google Scholar]
- García, A.; Partl, M.N. How to transform an asphalt concrete pavement into a solar turbine. Appl. Energy 2014, 119, 431–437. [Google Scholar] [CrossRef]
- Chiarelli, A.; Dawson, A.R.; García, A. Parametric analysis of energy harvesting pavements operated by air convection. Appl. Energy 2015, 154, 951–958. [Google Scholar] [CrossRef]
- Chiarelli, A.; Al-Mohammedawi, A.; Dawson, A.R.; García, A. Construction and configuration of convection-powered asphalt solar collectors for the reduction of urban temperatures. Int. J. Therm. Sci. 2017, 112, 242–251. [Google Scholar] [CrossRef]
- Hasebe, M.; Kamikawa YMeiarashi, S. Thermoelectric Generators using Solar Thermal Energy in Heated Road Pavement. In Proceedings of the 25th International Conference on Thermoelectrics, Vienna, Austria, 6–10 August 2006; pp. 697–700. [Google Scholar] [CrossRef]
- Datta, U.; Dessouky, S.; Papagiannakis, A.T. Harvesting Thermoelectric Energy from Asphalt Pavements. Transp. Res. Rec. 2017, 2628, 12–22. [Google Scholar] [CrossRef]
- Jiang, W.; Xiao, J.; Yuan, D.; Lu, H.; Xu, S.; Huang, Y. Design and experiment of thermoelectric asphalt pavements with power-generation and temperature-reduction functions. Energy Build. 2018, 169, 39–47. [Google Scholar] [CrossRef]
- Tahami, S.A.; Gholikhani, M.; Nasouri, R. Dessouky. Developing a new thermoelectric approach for energy harvesting from asphalt pavements. Appl. Energy 2019, 238, 786–795. [Google Scholar] [CrossRef]
- The Local France. France’s Experimental ‘Solar Highway’ Has Failed, Admit Officials. Available online: https://www.thelocal.fr/20190725/frances-experimental-solar-highway-has-failed-admit-officials (accessed on 31 July 2019).
- Duarte, F.; Casimiro, F.; Correia, D.; Mendes, R.; Ferreira, A. Waynergy people: A new pavement energy harvest system. In Proceedings of the Institution of Civil Engineers—Municipal Engineer; Thomas Telford Ltd.: London, UK, 2013; Volume 166, pp. 250–256. [Google Scholar] [CrossRef]
- Duarte, F.; Champalimaud, J.P.; Ferreira, A. Waynergy vehicle: A new pavement energy harvest system. In Proceedings of the Institution of Civil Engineers—Municipal Engineer; Thomas Telford Ltd.: London, UK, 2015; Volume 169, pp. 13–18. [Google Scholar] [CrossRef]
- Gholikani, M.; Nasouri, R.; Tahami, S.A.; Legette, S.; Dessouky, S.; Montoya, A. Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump. Appl. Energy 2005, 250, 503–511. [Google Scholar] [CrossRef]
- Lee, C.S.; Joo, J.; Han, S.; Lee, J.H.; Koh, S.K. Poly (vinylidene fluoride) transducers with highly conducting poly (3,4-ethylenedioxythiophene) electrodes. Synth. Met. 2005, 152, 49–52. [Google Scholar] [CrossRef]
- Zhao, H.; Tao, Y.; Niu, Y.; Ling, J. Harvesting Energy from Asphalt Pavement by Piezoelectric Generator. J. Wuhan Univ. Technol.-Mater 2014, 29, 933–937. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Hou, Y.; Guo, M.; Ye, Z.; Tong, X.; Wang, D. Development in Stacked-Array-Type Piezoelectric Energy Harvester in Asphalt Pavement. J. Mater. Civ. Eng. 2017, 29. [Google Scholar] [CrossRef]
- Xiong, H.; Wang, L. Piezoelectric energy harvester for public roadway: On-site installation and evaluation. Appl. Energy 2016, 174, 101–107. [Google Scholar] [CrossRef]
- Roshani, H.; Dessouky, S.; Montoya, A.; Papagiannakis, A. Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study. Appl. Energy 2016, 182, 210–218. [Google Scholar] [CrossRef]
- Roshani, H.; Jagtap, P.; Dessouky, S.; Montoya, A.; Papagiannakis, A.T. Theoretical and Experimental Evaluation of Two Roadway Piezoelectric-Based Energy Harvesting Prototypes. J. Mater. Civ. Eng. 2018, 30, 04017264. [Google Scholar] [CrossRef]
- Wang, C.; Song, Z.; Gao, Z.; Yu, G.; Wang, S. Preparation and performance research of stacked piezoelectric energy-harvesting units for pavements. Energy Build. 2019, 183, 581–591. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, J.; Ling, J. Finite element analysis of Cymbal piezoelectric transducers for harvesting energy from asphalt pavement. J. Ceram. Soc. Jpn. 2010, 118, 909–915. [Google Scholar] [CrossRef]
- Chua, H.G.; Kok, B.C.; Goh, H.H. Modelling and design analyses of a piezoelectric cymbal transducer (PCT) structure for energy harvesting application. Energy Sustain. 2014, 103, 103–114. [Google Scholar] [CrossRef]
- Moure, A.; Rodríguez, M.I.; Rueda, S.H.; Gonzalo, A.; Rubio-Marcos, F.; Cuadros, D.U.; Pérez-Lepe, A.; Fernández, J. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Convers. Manag. 2016, 112, 246–253. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, H.; Dong, Z.; Sun, Y.; Gao, Y. Laboratory Testing of Piezoelectric Bridge Transducers for Asphalt Pavement Energy Harvesting. Key Eng. Mater. 2012, 492, 172–175. [Google Scholar]
- Yesner, G.; Kuciej, M.; Safari, A.; Jasim, A.; Wang, H.; Maher, A. Piezoelectric energy harvesting using a novel cymbal transducer design. In Proceedings of the 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop, Darmstadt, Germany, 21–25 August 2016. [Google Scholar] [CrossRef]
- Yesner, G.; Safari, A.; Jasim, A.; Wang, H.; Basily, B.; Maher, A. Evaluation of a Novel Piezoelectric Bridge Transducer. In Proceedings of the 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices, Atlanta, GA, USA, 7–11 May 2017; pp. 113–115. [Google Scholar] [CrossRef]
- Jasim, A.; Yesner, G.; Wang, H.; Safari, A.; Maher, A.; Basily, B. Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications. Appl. Energy 2018, 224, 438–447. [Google Scholar] [CrossRef]
- Song, Y.; Yang, C.H.; Hong, S.K.; Hwang, S.J.; Kim, J.H.; Choi, J.Y.; Sung, T.H. Road energy harvester designed as a macro-power source using the piezoelectric effect. Int. J. Hydrogen Energy 2016, 41, 12563–12568. [Google Scholar] [CrossRef]
- Cho, J.Y.; Kim, K.; Hwang, W.S.; Yang, C.H.; Ahn, J.H.; Hong, S.D.; Jeon, D.H.; Song, G.J.; Ryu, C.H.; Woo, S.B.; et al. A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system. Appl. Energy 2019, 242, 294–301. [Google Scholar] [CrossRef]
- Jung, I.; Shin, Y.-H.; Kim, S.; Choi, J.-Y.; Kang, C.-Y. Flexible piezoelectric polymer-based energy harvesting system for roadway applications. Appl. Energy 2017, 197, 222–229. [Google Scholar] [CrossRef]
- Chuang, T.; Wang, Z.; Hill, M.; White, G. Fatigue Life Predictions of PZT Using Continuum Damage Mechanics and Finite Element Methods. In Fracture Mechanics of Ceramics; Springer: Berlin/Heidelberg, Germany, 1996; Volume 12. [Google Scholar] [CrossRef]
- Wang, D.; Fotinich, F.; Carman, G.P. Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. J. Appl. Phys. 1998, 83, 5342–5350. [Google Scholar] [CrossRef]
- Mizuno, M.; Enomoto, Y.; Okayasu, M. Fatigue life of piezoelectric ceramics and evaluation of internal damage. Procedia Eng. 2010, 2, 291–297. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.S.; Li, Y.X.; Yao, X. Fatigue Behaviors in PZT Ceramics Induced by Mechanical Cyclic Load. Ferroelectr. Lett. Sect. 2014, 41, 123–128. [Google Scholar] [CrossRef]
- Kueppers, H.; Leuerer, T.; Schnakenberg, U.; Mokwa, W.; Hoffmann, M.; Schneller, T.; Boettger, U.; Waser, R. PZT thin films for piezoelectric microactuator applications. Sens. Actuators A Phys. 2002, 97–98, 680–684. [Google Scholar] [CrossRef]
- Mao, Z.; Yoshida, K.; Kim, J.W. A micro vertically allocated SU-8 check valve and its characteristics. Microsyst. Technol. 2019, 25, 245–255. [Google Scholar] [CrossRef]
- Liu, H.; Quan, C.; Tay, C.J.; Kobayashi, T.; Lee, C. A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations. Phys. Procedia 2011, 19, 129–133. [Google Scholar] [CrossRef]
- Shen, D.; Park, J.-H.; Noh, J.H.; Choe, S.-Y.; Kim, S.-H.; Wikle, H.C.; Kim, D.-J. Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens. Actuators A Phys. 2009, 154, 103–108. [Google Scholar] [CrossRef]
- Sawane, M.; Prasad, M. MEMS piezoelectric sensor for self-powered devices: A review. Mater. Sci. Semicond. Process. 2023, 158, 107324. [Google Scholar] [CrossRef]
- Wang, H.; Jasim, A. 14—Piezoelectric energy harvesting from pavement. In Woodhead Publishing Series in Civil and Structural Engineering, Eco-Efficient Pavement Construction Materials; Pacheco-Torgal, F., Amirkhanian, S., Wang, H., Schlangen, E., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 367–382. ISBN 9780128189818. [Google Scholar] [CrossRef]
Hour | Vehicle Number | Type |
---|---|---|
04-06-2018 14:08:07 | 1 | Six-axle truck |
04-06-2018 14:08:11 | 2 | Two-axle truck |
04-06-2018 14:08:16 | 3 | Three-axle truck |
04-06-2018 14:08:21 | 4 | Passenger car |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heller, L.F.; Brito, L.A.T.; Coelho, M.A.J.; Brusamarello, V.; Nuñez, W.P. Development of a Pavement-Embedded Piezoelectric Harvester in a Real Traffic Environment. Sensors 2023, 23, 4238. https://doi.org/10.3390/s23094238
Heller LF, Brito LAT, Coelho MAJ, Brusamarello V, Nuñez WP. Development of a Pavement-Embedded Piezoelectric Harvester in a Real Traffic Environment. Sensors. 2023; 23(9):4238. https://doi.org/10.3390/s23094238
Chicago/Turabian StyleHeller, Lucas Fraporti, Lélio Antônio Teixeira Brito, Marcos Antônio Jeremias Coelho, Valner Brusamarello, and Washington Peres Nuñez. 2023. "Development of a Pavement-Embedded Piezoelectric Harvester in a Real Traffic Environment" Sensors 23, no. 9: 4238. https://doi.org/10.3390/s23094238
APA StyleHeller, L. F., Brito, L. A. T., Coelho, M. A. J., Brusamarello, V., & Nuñez, W. P. (2023). Development of a Pavement-Embedded Piezoelectric Harvester in a Real Traffic Environment. Sensors, 23(9), 4238. https://doi.org/10.3390/s23094238