Combining Heart Rate Variability and Oximetry to Improve Apneic Event Screening in Non-Desaturating Patients
Abstract
:1. Introduction
1.1. Motivation and Problem Description
1.2. Review of Relevant Literature
1.3. Objectives of This Study
2. Materials and Methods
2.1. Databases
2.1.1. Physionet Database
2.1.2. HuGCDN2014-OXI Database
2.2. Signals Preprocessing
2.3. Feature Extraction
2.3.1. Oximetry Features
- (a)
- Time-domain features:
- (b)
- Frequency domain features:
2.3.2. HRV Features
- (a)
- Frequency domain features:
- (b)
- Cepstral domain features:
- (c)
- Detrended Fluctuation Analysis (DFA):
- (d)
- Recurrence Quantification Analysis (RQA):
2.4. Feature Selection
2.5. Classifiers
3. Results
3.1. Per-Segment Classification and Characteristic Selection
3.2. Per-Recording Classification
4. Discussion
4.1. Evaluation of HRV and SpO2 Signals in Apnea Detection and OSA Diagnosis
4.2. Selected Features
4.3. Desaturation in the Presence of Apneas
4.4. Limitations of the Proposed Method
4.5. Comparison with Prior Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bousquet, J.; Khaltaev, N.; World Health Organization. Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach; World Health Organization: Geneva, Switzerland, 2007; ISBN 9789241563468. [Google Scholar]
- Lavie, L. Obstructive sleep apnoea syndrome—An oxidative stress disorder. Sleep Med. Rev. 2003, 7, 35–51. [Google Scholar] [CrossRef]
- Chokroverty, S. Medicina de los Trastornos del Sueño; Elsevier: Barcelona, Spain, 2011; ISBN 978-84-8086-733-7. [Google Scholar]
- Phillipson, E.A. Sleep Apnea—A Major Public Health Problem. N. Engl. J. Med. 2002, 328, 1271–1273. [Google Scholar] [CrossRef]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed]
- Flemons, W.W.; Littner, M.R.; Rowley, J.A.; Gay, P.; Anderson, W.M.; Hudgel, D.W.; McEvoy, R.D.; Loube, D.I. Home Diagnosis of Sleep Apnea: A Systematic Review of the Literature. Chest 2003, 124, 1543–1579. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, F.; Mostafa, S.S.; Ravelo-Garcia, A.G.; Morgado-Dias, F.; Penzel, T. A Review of Obstructive Sleep Apnea Detection Approaches. IEEE J. Biomed. Health Inform. 2019, 23, 825–837. [Google Scholar] [CrossRef]
- Doukas, C.; Petsatodis, T.; Boukis, C.; Maglogiannis, I. Automated sleep breath disorders detection utilizing patient sound analysis. Biomed. Signal Process. Control. 2012, 7, 256–264. [Google Scholar] [CrossRef]
- Alencar, A.M.; da Silva, D.G.V.; Oliveira, C.B.; Vieira, A.P.; Moriya, H.T.; Lorenzi-Filho, G. Dynamics of snoring sounds and its connection with obstructive sleep apnea. Phys. A: Stat. Mech. Appl. 2013, 392, 271–277. [Google Scholar] [CrossRef]
- Almazaydeh, L.; Elleithy, K.; Faezipour, M.; Abushakra, A. Apnea Detection based on Respiratory Signal Classification. Procedia Comput. Sci. 2013, 21, 310–316. [Google Scholar] [CrossRef]
- ElMoaqet, H.; Kim, J.; Tilbury, D.; Ramachandran, S.K.; Ryalat, M.; Chu, C.-H. Gaussian Mixture Models for Detecting Sleep Apnea Events Using Single Oronasal Airflow Record. Appl. Sci. 2020, 10, 7889. [Google Scholar] [CrossRef]
- ElMoaqet, H.; Eid, M.; Glos, M.; Ryalat, M.; Penzel, T. Deep Recurrent Neural Networks for Automatic Detection of Sleep Apnea from Single Channel Respiration Signals. Sensors 2020, 20, 5037. [Google Scholar] [CrossRef]
- Kim, J.; ElMoaqet, H.; Tilbury, D.M.; Ramachandran, S.K.; Penzel, T. Time domain characterization for sleep apnea in oronasal airflow signal: A dynamic threshold classification approach. Physiol. Meas. 2019, 40, 054007. [Google Scholar] [CrossRef] [PubMed]
- Maali, Y.; Al-Jumaily, A. Multi Neural Networks Investigation based Sleep Apnea Prediction. Procedia Comput. Sci. 2013, 24, 97–102. [Google Scholar] [CrossRef]
- Benavides, A.M.; Pozo, R.F.; Toledano, D.T.; Murillo, J.L.B.; Gonzalo, E.L.; Gómez, L.H. Analysis of voice features related to obstructive sleep apnoea and their application in diagnosis support. Comput. Speech Lang. 2014, 28, 434–452. [Google Scholar] [CrossRef]
- Solé-Casals, J.; Munteanu, C.; Martín, O.C.; Barbé, F.; Queipo, C.; Amilibia, J.; Durán-Cantolla, J. Detection of severe obstructive sleep apnea through voice analysis. Appl. Soft Comput. 2014, 23, 346–354. [Google Scholar] [CrossRef]
- Varon, C.; Caicedo, A.; Testelmans, D.; Buyse, B.; Van Huffel, S. A Novel Algorithm for the Automatic Detection of Sleep Apnea from Single-Lead ECG. IEEE Trans. Biomed. Eng. 2015, 62, 2269–2278. [Google Scholar] [CrossRef] [PubMed]
- Ravelo-García, A.G.; Casanova-Blancas, U.; Martín-González, S.; Hernández-Pérez, E.; Guerra-Moreno, I.; Quintana-Morales, P.; Wessel, N.; Navarro-Mesa, J.L. An approach to the enhancement of sleep apnea detection by means of detrended fluctuation analysis of RR intervals. In Proceedings of the Computing in Cardiology 2014, Cambridge, MA, USA, 7–10 September 2014; Volume 41, pp. 905–908. [Google Scholar]
- Penzel, T.; Kantelhardt, J.; Grote, L.; Peter, J.; Bunde, A. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 2003, 50, 1143–1151. [Google Scholar] [CrossRef]
- Penzel, T.; McNames, J.; De Chazal, P.; Raymond, B.; Murray, A.; Moody, G. Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med. Biol. Eng. Comput. 2002, 40, 402–407. [Google Scholar] [CrossRef]
- Mietus, J.; Peng, C.; Ivanov, P.; Goldberger, A. Detection of obstructive sleep apnea from cardiac interbeat interval time series. In Proceedings of the Computing in Cardiology 2000, Cambridge, MA, USA, 24–27 September 2000; Volume 27, pp. 753–756. [Google Scholar] [CrossRef]
- Martín-González, S.; Navarro-Mesa, J.L.; Juliá-Serdá, G.; Kraemer, J.F.; Wessel, N.; Ravelo-García, A.G. Heart rate variability feature selection in the presence of sleep apnea: An expert system for the characterization and detection of the disorder. Comput. Biol. Med. 2017, 91, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Maier, C.; Dickhaus, H.; Bauch, M.; Penzel, T. Comparison of heart rhythm and morphological ECG features in recognition of sleep apnea from the ECG. In Proceedings of the Computing in Cardiology 2000, Thessaloniki, Greece, 21–24 September 2003; pp. 311–314. [Google Scholar] [CrossRef]
- Song, C.; Liu, K.; Zhang, X.; Chen, L.; Xian, X. An Obstructive Sleep Apnea Detection Approach Using a Discriminative Hidden Markov Model from ECG Signals. IEEE Trans. Biomed. Eng. 2016, 63, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Karandikar, K.; Le, T.Q.; Sa-Ngasoongsong, A.; Wongdhamma, W.; Bukkapatnam, S.T.S. Detection of sleep apnea events via tracking nonlinear dynamic cardio-respiratory coupling from electrocardiogram signals. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 7088–7091. [Google Scholar] [CrossRef]
- Hossen, A.; Al Ghunaimi, B.; Hassan, M.O. Subband decomposition soft-decision algorithm for heart rate variability analysis in patients with obstructive sleep apnea and normal controls. Signal Process. 2005, 85, 95–106. [Google Scholar] [CrossRef]
- Gutiérrez-Tobal, G.; Álvarez, D.; Gomez-Pilar, J.; Del Campo, F.; Hornero, R. Assessment of Time and Frequency Domain Entropies to Detect Sleep Apnoea in Heart Rate Variability Recordings from Men and Women. Entropy 2015, 17, 123–141. [Google Scholar] [CrossRef]
- Gula, L.J.; Krahn, A.D.; Skanes, A.; Ferguson, K.A.; George, C.; Yee, R.; Klein, G.J. Heart Rate Variability in Obstructive Sleep Apnea: A Prospective Study and Frequency Domain Analysis. Ann. Noninvasive Electrocardiol. 2003, 8, 144–149. [Google Scholar] [CrossRef]
- Bsoul, M.; Minn, H.; Tamil, L. Apnea MedAssist: Real-time Sleep Apnea Monitor Using Single-Lead ECG. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 416–427. [Google Scholar] [CrossRef]
- Zamarrón, C.; Romero, P.; Rodriguez, J.; Gude, F. Oximetry spectral analysis in the diagnosis of obstructive sleep apnoea. Clin. Sci. 1999, 97, 467. [Google Scholar] [CrossRef]
- Marcos, J.V.; Hornero, R.; Alvarez, D.; del Campo, F.; Zamarrón, C. Assessment of four statistical pattern recognition techniques to assist in obstructive sleep apnoea diagnosis from nocturnal oximetry. Med. Eng. Phys. 2009, 31, 971–978. [Google Scholar] [CrossRef]
- Marcos, J.V.; Hornero, R.; Alvarez, D.; Del Campo, F.; López, M.; Zamarrón, C. Radial basis function classifiers to help in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Med. Biol. Eng. Comput. 2008, 46, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Marcos, J.V.; Hornero, R.; Alvarez, D.; Del Campo, F.; Aboy, M. Automated detection of obstructive sleep apnoea syndrome from oxygen saturation recordings using linear discriminant analysis. Med. Biol. Eng. Comput. 2010, 48, 895–902. [Google Scholar] [CrossRef]
- Marcos, J.V.; Hornero, R.; Álvarez, D.; Aboy, M.; Del Campo, F. Automated Prediction of the Apnea-Hypopnea Index from Nocturnal Oximetry Recordings. IEEE Trans. Biomed. Eng. 2012, 59, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Marcos, J.V.; Hornero, R.; Alvarez, D.; Nabney, I.; Del Campo, F.; Zamarrón, C. The classification of oximetry signals using Bayesian neural networks to assist in the detection of obstructive sleep apnoea syndrome. Physiol. Meas. 2010, 31, 375–394. [Google Scholar] [CrossRef]
- Magalang, U.J.; Dmochowski, J.; Veeramachaneni, S.; Draw, A.; Mador, M.J.; El-Solh, A.; Grant, B.J. Prediction of the Apnea-Hypopnea Index from Overnight Pulse Oximetry. Chest 2003, 124, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Bister, M.; Blanchfield, P.; Salleh, Y. Automated detection of obstructive apnea and hypopnea events from oxygen saturation signal. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 3, pp. 321–324. [Google Scholar] [CrossRef]
- Xie, B.; Qiu, W.; Minn, H.; Tamil, L.; Nourani, M. An Improved Approach for Real-time Detection of Sleep Apnea. In Proceedings of the BIOSIGNALS 2011—Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, Rome, Italy, 26–29 January 2011; pp. 169–175. [Google Scholar]
- Le, T.Q.; Cheng, C.; Sangasoongsong, A.; Bukkapatnam, S.T. Prediction of sleep apnea episodes from a wireless wearable multisensor suite. In Proceedings of the 2013 IEEE Point-of-Care Healthcare Technologies (PHT), Bangalore, India, 16–18 January 2013; pp. 152–155. [Google Scholar] [CrossRef]
- Hua, C.-C.; Yu, C.-C. Smoothed Periodogram of Oxyhemoglobin Saturation by Pulse Oximetry in Sleep Apnea Syndrome. Chest 2007, 131, 750–757. [Google Scholar] [CrossRef]
- Hornero, R.; Alvarez, D.; Abasolo, D.; del Campo, F.; Zamarron, C. Utility of Approximate Entropy from Overnight Pulse Oximetry Data in the Diagnosis of the Obstructive Sleep Apnea Syndrome. IEEE Trans. Biomed. Eng. 2007, 54, 107–113. [Google Scholar] [CrossRef]
- Hang, L.W.; Yen, C.W.; Lin, C.L. Frequency-domain index of oxyhemoglobin saturation from pulse oximetry for obstructive sleep apnea syndrome. J. Med. Biol. Eng. 2012, 32, 343–348. [Google Scholar] [CrossRef]
- Burgos, A.; Goñi, A.; Illarramendi, A.; Bermudez, J. Real-Time Detection of Apneas on a PDA. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-García, J.-C.; Tsai, W.H.; Flemons, W.W.; Masuda, A.; Brant, R.; Hajduk, E.; Whitelaw, W.A.; Remmers, J.E. Automated analysis of digital oximetry in the diagnosis of obstructive sleep apnoea. Thorax 2000, 55, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, D.; Hornero, R.; Marcos, J.V.; del Campo, F. Feature selection from nocturnal oximetry using genetic algorithms to assist in obstructive sleep apnoea diagnosis. Med. Eng. Phys. 2012, 34, 1049–1057. [Google Scholar] [CrossRef]
- Álvarez, D.; Hornero, R.; García, M.; del Campo, F.; Zamarrón, C. Improving diagnostic ability of blood oxygen saturation from overnight pulse oximetry in obstructive sleep apnea detection by means of central tendency measure. Artif. Intell. Med. 2007, 41, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, D.; Hornero, R.; Abásolo, D.; Del Campo, F.; Zamarrón, C. Nonlinear characteristics of blood oxygen saturation from nocturnal oximetry for obstructive sleep apnoea detection. Physiol. Meas. 2006, 27, 399–412. [Google Scholar] [CrossRef]
- Alvarez, D.; Gutierrez-Tobal, G.C.; Vaquerizo-Villar, F.; Barroso-Garcia, V.; Crespo, A.; Arroyo, C.A.; Del Campo, F.; Hornero, R. Automated analysis of unattended portable oximetry by means of Bayesian neural networks to assist in the diagnosis of sleep apnea. In Proceedings of the 2016 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), Madrid, Spain, 4–9 April 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Morillo, D.S.; Gross, N.; León, A.; Crespo, L.F. Automated frequency domain analysis of oxygen saturation as a screening tool for SAHS. Med. Eng. Phys. 2012, 34, 946–953. [Google Scholar] [CrossRef]
- Morillo, D.S.; Rojas, J.L.; Crespo, L.F.; León, A.; Gross, N. Poincaré analysis of an overnight arterial oxygen saturation signal applied to the diagnosis of sleep apnea hypopnea syndrome. Physiol. Meas. 2009, 30, 405–420. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Wang, Y.; Qiu, C. A real-time auto-adjustable smart pillow system for sleep apnea detection and treatment. In Proceedings of the 12th International Conference on Information Processing in Sensor Networks—IPSN ’13, Porto, Portugal, 11–13 April 2013; pp. 179–190. [Google Scholar] [CrossRef]
- Hang, L.-W.; Wang, H.-L.; Chen, J.-H.; Hsu, J.-C.; Lin, H.-H.; Chung, W.-S.; Chen, Y.-F. Validation of overnight oximetry to diagnose patients with moderate to severe obstructive sleep apnea. BMC Pulm. Med. 2015, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.W.; Hwang, S.H.; Cho, J.G.; Choi, B.H.; Baek, H.J.; Lee, Y.J.; Jeong, D.-U.; Park, K.S. Real-Time Automatic Apneic Event Detection Using Nocturnal Pulse Oximetry. IEEE Trans. Biomed. Eng. 2018, 65, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Blanco, A.M.; Alvarez, D.; Crespo, A.; Arroyo, C.A.; Cerezo-Hernández, A.; Gutiérrez-Tobal, G.; Hornero, R.; Del Campo, F. Assessment of automated analysis of portable oximetry as a screening test for moderate-to-severe sleep apnea in patients with chronic obstructive pulmonary disease. PLoS ONE 2017, 12, e0188094. [Google Scholar] [CrossRef] [PubMed]
- Netzer, N.; Eliasson, A.H.; Netzer, C.; Kristo, D.A. Overnight Pulse Oximetry for Sleep-Disordered Breathing in Adults. Chest 2001, 120, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Raymond, B.; Cayton, R.M.; Chappell, M.J. Combined index of heart rate variability and oximetry in screening for the sleep apnoea/hypopnoea syndrome. J. Sleep Res. 2003, 12, 53–61. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12603787 (accessed on 11 July 2019). [CrossRef]
- Heneghan, C.; Chua, C.-P.; Garvey, J.F.; De Chazal, P.; Shouldice, R.; Boyle, P.; McNicholas, W.T. A Portable Automated Assessment Tool for Sleep Apnea Using a Combined Holter-Oximeter. Sleep 2008, 31, 1432–1439. Available online: http://www.ncbi.nlm.nih.gov/pubmed/18853941 (accessed on 11 July 2019). [CrossRef]
- De Chazal, P.; Heneghan, C.; McNicholas, W.T. Multimodal detection of sleep apnoea using electrocardiogram and oximetry signals. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2009, 367, 369–389. [Google Scholar] [CrossRef]
- Shi, C.; Nourani, M.; Gupta, G.; Tamil, L. A virtual sleep laboratory. In Proceedings of the First ACM Workshop on Mobile Systems, Applications, and Services for Healthcare—mHealthSys’11, Seattle, WA, USA, , 1 November 2011; p. 1. [Google Scholar] [CrossRef]
- Xie, B.; Minn, H. Real-Time Sleep Apnea Detection by Classifier Combination. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 469–477. [Google Scholar] [CrossRef]
- Ravelo-García, A.G.; Kraemer, J.F.; Navarro-Mesa, J.L.; Hernández-Pérez, E.; Navarro-Esteva, J.; Juliá-Serdá, G.; Penzel, T.; Wessel, N. Oxygen Saturation and RR Intervals Feature Selection for Sleep Apnea Detection. Entropy 2015, 17, 2932–2957. [Google Scholar] [CrossRef]
- Acharya, U.R.; Joseph, K.P.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef]
- Al-Angari, H.M.; Sahakian, A.V. Automated Recognition of Obstructive Sleep Apnea Syndrome Using Support Vector Machine Classifier. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 463–468. [Google Scholar] [CrossRef]
- Zamarrón, C.; Gude, F.; Barcala, J.; Rodriguez, J.R.; Romero, P.V. Utility of Oxygen Saturation and Heart Rate Spectral Analysis Obtained from Pulse Oximetric Recordings in the Diagnosis of Sleep Apnea Syndrome. Chest 2003, 123, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Ayappa, I.; Rapaport, B.S.; Norman, R.G.; Rapoport, D.M. Immediate consequences of respiratory events in sleep disordered breathing. Sleep Med. 2005, 6, 123–130. [Google Scholar] [CrossRef]
- Schlotthauer, G.; Di Persia, L.E.; Larrateguy, L.D.; Milone, D.H. Screening of obstructive sleep apnea with empirical mode decomposition of pulse oximetry. Med. Eng. Phys. 2014, 36, 1074–1080. [Google Scholar] [CrossRef]
- Zamarrón, C.; García Paz, V.; Morete, E.; del Campo-Matías, F. Association of chronic obstructive pulmonary disease and obstructive sleep apnea consequences. Int. J. Chron. Obstruct. Pulmon. Dis. 2008, 3, 671–682. [Google Scholar] [CrossRef]
- Coccagna, G.; Lugaresi, E. Arterial Blood Gases and Pulmonary and Systemic Arterial Pressure During Sleep in Chronic Obstructive Pulmonary Disease. Sleep 1978, 1, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, Y.; Kryger, M.H. Nocturnal Oximetry: Is It a Screening Tool for Sleep Disorders? Sleep 1995, 18, 167–171. [Google Scholar] [CrossRef]
- Mendez, M.O.; Ruini, D.D.; Villantieri, O.P.; Matteucci, M.; Penzel, T.; Cerutti, S.; Bianchi, A.M. Detection of Sleep Apnea from surface ECG based on features extracted by an Autoregressive Model. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; Volume 2007, pp. 6105–6108. [Google Scholar] [CrossRef]
- Schrader, M.; Zywietz, C.; von Einem, V.; Widiger, B.; Joseph, G. Detection of sleep apnea in single channel ECGs from the PhysioNet data base. In Proceedings of the Computers in Cardiology 2000, Cambridge, MA, USA, 24–27 September 2002; Volume 27, pp. 263–266. [Google Scholar] [CrossRef]
- Al-Angari, H.M.; Sahakian, A.V. Use of Sample Entropy Approach to Study Heart Rate Variability in Obstructive Sleep Apnea Syndrome. IEEE Trans. Biomed. Eng. 2007, 54, 1900–1904. [Google Scholar] [CrossRef]
- Shiau, Y.-H.; Sie, J.-H.; Li, S.-P. Detecting sleep apnea by volatility clustering of heart rate variability. Int. J. Cardiol. 2013, 168, 1638–1640. [Google Scholar] [CrossRef] [PubMed]
- Maier, C.; Dickhaus, H. Recurrence analysis of nocturnal heart rate in sleep apnea patients. Biomed. Eng. Biomed. Tech. 2006, 51, 224–228. [Google Scholar] [CrossRef]
- Mendez, M.O.; Corthout, J.; Van Huffel, S.; Matteucci, M.; Penzel, T.; Cerutti, S.; Bianchi, A.M. Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis. Physiol. Meas. 2010, 31, 273–289. [Google Scholar] [CrossRef]
- Sharma, H.; Sharma, K. An algorithm for sleep apnea detection from single-lead ECG using Hermite basis functions. Comput. Biol. Med. 2016, 77, 116–124. [Google Scholar] [CrossRef]
- Cheng, C.; Kan, C.; Yang, H. Heterogeneous recurrence analysis of heartbeat dynamics for the identification of sleep apnea events. Comput. Biol. Med. 2016, 75, 10–18. [Google Scholar] [CrossRef]
- Zbilut, J.P.; Santucci, P.A.; Yang, S.-Y.; Podolski, J.L. Linear and Nonlinear Evaluation of Ventricular Arrhythmias; Springer: Berlin/Heidelberg, Germany, 2002; pp. 151–157. [Google Scholar] [CrossRef]
- Tayel, M.B.; AlSaba, E.I. Review: Nonlinear Techniques for Analysis of Heart Rate Variability. WSEAS Trans. Signal Process. 2017, 13, 49–63. [Google Scholar]
- Del Campo, F.; Hornero, R.; Zamarrón, C.; Abasolo, D.; Álvarez, D. Oxygen saturation regularity analysis in the diagnosis of obstructive sleep apnea. Artif. Intell. Med. 2006, 37, 111–118. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Morgado-Dias, F.; Ravelo-García, A.G. Comparison of SFS and mRMR for oximetry feature selection in obstructive sleep apnea detection. Neural Comput. Appl. 2020, 32, 15711–15731. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Baptista, D.; Ravelo-García, A.G.; Juliá-Serdá, G.; Morgado-Dias, F. Greedy based convolutional neural network optimization for detecting apnea. Comput. Methods Programs Biomed. 2020, 197, 105640. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Mendonca, F.; Ravelo-Garcia, A.G.; Juliá-Serdá, G.G.; Morgado-Dias, F. Multi-Objective Hyperparameter Optimization of Convolutional Neural Network for Obstructive Sleep Apnea Detection. IEEE Access 2020, 8, 129586–129599. [Google Scholar] [CrossRef]
- Choi, S.; Bennett, L.; Mullins, R.; Davies, R.; Stradling, J. Which derivative from overnight oximetry best predicts symptomatic response to nasal continuous positive airway pressure in patients with obstructive sleep apnoea? Respir. Med. 2000, 94, 895–899. [Google Scholar] [CrossRef]
- Álvarez, D.; Hornero, R.; Marcos, J.V.; del Campo, F. Multivariate Analysis of Blood Oxygen Saturation Recordings in Obstructive Sleep Apnea Diagnosis. IEEE Trans. Biomed. Eng. 2010, 57, 2816–2824. [Google Scholar] [CrossRef]
- LaFleur, S.; Mahgoub, I. A Personal Body Area Network as a Pre-Screening Surrogate to the Polysomnography. In Proceedings of the 8th International Conference on Body Area Networks, Boston, MA, USA, 30 September–2 October 2013; pp. 233–236. [Google Scholar] [CrossRef]
- Martín-González, S.; Navarro-Mesa, J.L.; Juliá-Serdá, G.; Ramírez-Ávila, G.M.; Ravelo-García, A.G. Improving the understanding of sleep apnea characterization using Recurrence Quantification Analysis by defining overall acceptable values for the dimensionality of the system, the delay, and the distance threshold. PLoS ONE 2018, 13, e0194462. [Google Scholar] [CrossRef]
- Ravelo-García, A.G.; Navarro-Mesa, J.; Murillo-Diaz, M.; Julia-Serda, J. Application of RR series and oximetry to a statistical classifier for the detection of sleep apnoea/hypopnoea. In Proceedings of the Computers in Cardiology, Chicago, IL, USA, 19–22 September 2005; pp. 305–308. [Google Scholar] [CrossRef]
- Penzel, T.; Moody, G.; Mark, R.; Goldberger, A.; Peter, J. The apnea-ECG database. In Proceedings of the Computers in Cardiology 2000, Cambridge, MA, USA, 24–27 September 2002; Volume 27, pp. 255–258. [Google Scholar] [CrossRef]
- Malik, M. Task Force of the European Society of Cardiology, and the North American Electrophysiology Society of Pacing and Electrophysiology. Guidelines heart rate variability. Eur. Heart J. 1996, 93, 354–381. [Google Scholar] [CrossRef]
- Ravelo-García, A.G.; Saavedra-Santana, P.; Juliá-Serdá, G.; Navarro-Mesa, J.L.; Navarro-Esteva, J.; Álvarez-López, X.; Gapelyuk, A.; Penzel, T.; Wessel, N. Symbolic dynamics marker of heart rate variability combined with clinical variables enhance obstructive sleep apnea screening. Chaos Interdiscip. J. Nonlinear Sci. 2014, 24, 24404. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Wessel, N.; Voss, A.; Malberg, H.; Ziehmann, C.; Voss, H.U.; Schirdewan, A.; Meyerfeldt, U.; Kurths, J. Nonlinear analysis of complex phenomena in cardiological data. Herzschrittmachertherapie Elektrophysiologie 2000, 11, 159–173. [Google Scholar] [CrossRef]
- Ravelo-García, A.G.; Navarro-Mesa, J.L.; Martín-González, S.; Hernández-Pérez, E.; Quintana-Morales, P.; Guerra-Moreno, I.; Navarro-Esteva, J.; Julià-Serdà, G. Cepstrum Coefficients of the RR Series for the Detection of Obstructive Sleep Apnea Based on Different Classifiers; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8112, pp. 266–271. [Google Scholar] [CrossRef]
- Kitlas Golińska, A. Detrended fluctuation analysis (DFA) in biomedical signal processing: Selected examples. Stud. Logic Gramm. Rhetor. 2012, 29, 107–115. [Google Scholar]
- Peng, C.-K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time Series. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Absil, P.-A.; Sepulchre, R.; Bilge, A.; Gérard, P. Nonlinear analysis of cardiac rhythm fluctuations using DFA method. Phys. A Stat. Mech. Appl. 1999, 272, 235–244. [Google Scholar] [CrossRef]
- Rodriguez, E.; Echeverria, J.C.; Alvarez-Ramirez, J. Detrended fluctuation analysis of heart intrabeat dynamics. Phys. A Stat. Mech. Appl. 2007, 384, 429–438. [Google Scholar] [CrossRef]
- Eckmann, J.-P.; Kamphorst, S.O.; Ruelle, D. Recurrence Plots of Dynamical Systems. Europhysics Lett. 1987, 4, 973–977. [Google Scholar] [CrossRef]
- Webber, C.; Zbilut, J. Recurrence quantification analysis of nonlinear dynamical systems. Tutorials Contemp. Nonlinear Methods Behav. Sci. 2005, 94, 26–94. [Google Scholar]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Takens, F. Detecting Strange Attractors in Turbulence. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Shelhamer, M. Nonlinear Dynamics in Physiology—A State-Space Approach; World Scientific: Singapore, 2007. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403–3411. [Google Scholar] [CrossRef]
- Mohebbi, M.; Ghassemian, H. Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal. Physiol. Meas. 2011, 32, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- Marwan, N.; Thiel, M.; Nowaczyk, N.R. Cross recurrence plot based synchronization of time series. Nonlinear Process. Geophys. 2002, 9, 325–331. [Google Scholar] [CrossRef]
- Gao, J.B. Recurrence Time Statistics for Chaotic Systems and Their Applications. Phys. Rev. Lett. 1999, 83, 3178–3181. [Google Scholar] [CrossRef]
- Marwan, N.; Donges, J.F.; Zou, Y.; Donner, R.V.; Kurths, J. Complex network approach for recurrence analysis of time series. Phys. Lett. A 2009, 373, 4246–4254. [Google Scholar] [CrossRef]
- Marwan, N. How to Avoid Potential Pitfalls in Recurrence Plot Based Data Analysis. Int. J. Bifurc. Chaos 2011, 21, 1003–1017. [Google Scholar] [CrossRef]
- Donner, R.; Small, M.; Donges, J.; Marwan, N.; Zou, Y.; Xiang, R.; Kurths, J. Recurrence-Based Time Series Analysis by Means of Complex Network Methods. Int. J. Bifurc. Chaos 2010, 21, 1019–1046. [Google Scholar] [CrossRef]
- TOCSY—Toolbox for Complex Systems (Recurrence Plots, Cross Recurrence Plots, System Identification, ACE, Nonlinear Wavelet Analysis, Nonlinear Regression Analysis, Adaptive Filtering, Coupling Direction). Available online: http://tocsy.pik-potsdam.de/ (accessed on 11 December 2019).
- Ravelo-Garcia, A.; Casanova-Blancas, U.; Martin-Gonzalez, S.; Hernandez-Perez, E.; Morales, P.Q.; Navarro-Mesa, J. An Approach to the Improvement of Electrocardiogram-based Sleep Breathing Pauses Detection by means of Permutation Entropy of the Heart Rate Variability. In Proceedings of the 2014 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2014, Liberia, Costa Rica, 16–18 July 2014; pp. 82–85. [Google Scholar] [CrossRef]
- Le, T.Q.; Cheng, C.; Sangasoongsong, A.; Wongdhamma, W.; Bukkapatnam, S.T.S. Wireless Wearable Multisensory Suite and Real-Time Prediction of Obstructive Sleep Apnea Episodes. IEEE J. Transl. Eng. Health Med. 2013, 1, 2700109. [Google Scholar] [CrossRef]
- Poolsawad, N.; Kambhampati, C.; Cleland, J.G.F. Balancing Class for Performance of Classification with a Clinical Dataset. Lect. Notes Eng. Comput. Sci. 2014, 1, 237–242. [Google Scholar]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Oliveira, M.G.; Nery, L.E.; Santos-Silva, R.; Sartori, D.E.; Alonso, F.F.; Togeiro, S.M.; Tufik, S.; Bittencourt, L. Is portable monitoring accurate in the diagnosis of obstructive sleep apnea syndrome in chronic pulmonary obstructive disease? Sleep Med. 2012, 13, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.S.; Baltzan, M.A.; Wolkove, N. Examination of Pulse Oximetry Tracings to Detect Obstructive Sleep Apnea in Patients with Advanced Chronic Obstructive Pulmonary Disease. Can. Respir. J. 2014, 21, 171–175. [Google Scholar] [CrossRef]
- Al-Mardini, M.; Aloul, F.; Sagahyroon, A.; Al-Husseini, L. Classifying obstructive sleep apnea using smartphones. J. Biomed. Inform. 2014, 52, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Alive Technologies. Available online: https://www.alivetec.com/pages/alive-bluetooth-heart-activity-monitor (accessed on 15 November 2019).
- Nonin Medical. Available online: https://www.nonin.com/products/3230/ (accessed on 15 November 2019).
- Oliver, N.; Flores-Mangas, F. HealthGear: A Real-time Wearable System for Monitoring and Analyzing Physiological Signals. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), Cambridge, MA, USA, 3–5 April 2006; pp. 61–64. [Google Scholar] [CrossRef]
- De Miguel, J.; Álvarez-Sala, R. Manual de Neumología Clínica, 2nd ed.; Editorial Médica Ergon: Barcelona, Spain, 2009. [Google Scholar]
- Herer, B.; Roche, N.; Carton, M.; Roig, C.; Poujol, V.; Huchon, G. Value of Clinical, Functional, and Oximetric Data for the Prediction of Obstructive Sleep Apnea in Obese Patients. Chest 1999, 116, 1537–1544. [Google Scholar] [CrossRef]
- Carlson, J.T.; Hedner, J.A.; Sellgren, J.; Elam, M.; Wallin, B.G. Depressed baroreflex sensitivity in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 1996, 154, 1490–1496. [Google Scholar] [CrossRef] [PubMed]
- Narkiewicz, K.; van de Borne, P.J.H.; Pesek, C.A.; Dyken, M.; Montano, N.; Somers, V.K. Selective Potentiation of Peripheral Chemoreflex Sensitivity in Obstructive Sleep Apnea. Circulation 1999, 99, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Zamarrón, C.; Romero, P.; Gude, F.; Amaro, A.; Rodriguez, J. Screening of obstructive sleep apnoea: Heart rate spectral analysis of nocturnal pulse oximetric recording. Respir. Med. 2001, 95, 759–765. [Google Scholar] [CrossRef]
- Van de Borne, P.; Montano, N.; Pagani, M.; Oren, R.; Somers, V.K. Absence of Low-Frequency Variability of Sympathetic Nerve Activity in Severe Heart Failure. Circulation 1997, 95, 1449–1454. [Google Scholar] [CrossRef]
- Freeman, R.; Saul, J.P.; Roberts, M.S.; Berger, R.D.; Broadbridge, C.; Cohen, R.J. Spectral Analysis of Heart Rate in Diabetic Autonomic Neuropathy. Arch. Neurol. 1991, 48, 185–190. [Google Scholar] [CrossRef]
- Shannon, D.C.; Carley, D.W.; Benson, H. Aging of modulation of heart rate. Am. J. Physiol. Circ. Physiol. 1987, 253, H874–H877. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.B.; Gibb, W.J.; Tran, T. Aging Effects on Heart Rate Variation. J. Gerontol. 1991, 46, M99–M106. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.B.J.; Lin, T.; Yang, C.C.H.; Li, C.-L.; Chen, C.-F.; Chou, P. Effect of aging on gender differences in neural control of heart rate. Am. J. Physiol. Circ. Physiol. 1999, 277, H2233–H2239. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, Y.; Wang, J. A RR interval based automated apnea detection approach using residual network. Comput. Methods Programs Biomed. 2019, 176, 93–104. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Mendonça, F.; Juliá-Serdá, G.; Morgado-Dias, F.; Ravelo-García, A.G. SC3: Self-configuring classifier combination for obstructive sleep apnea. Neural Comput. Appl. 2019, 32, 17825–17841. [Google Scholar] [CrossRef]
- Bernardini, A.; Brunello, A.; Gigli, G.L.; Montanari, A.; Saccomanno, N. AIOSA: An approach to the automatic identification of obstructive sleep apnea events based on deep learning. Artif. Intell. Med. 2021, 118, 102133. [Google Scholar] [CrossRef]
- Sharma, M.; Kumbhani, D.; Yadav, A.; Acharya, U.R. Automated Sleep apnea detection using optimal duration-frequency concentrated wavelet-based features of pulse oximetry signals. Appl. Intell. 2021, 52, 1325–1337. [Google Scholar] [CrossRef]
- Mendonça, F.; Mostafa, S.S.; Morgado-Dias, F.; Ravelo-García, A.G. An Oximetry Based Wireless Device for Sleep Apnea Detection. Sensors 2020, 20, 888. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Mendonça, F.; Ravelo-García, A.G.; Morgado-Dias, F. A Systematic Review of Detecting Sleep Apnea Using Deep Learning. Sensors 2019, 19, 4934. [Google Scholar] [CrossRef] [PubMed]
Works | Description |
---|---|
Varon et al. [17] | There are two different features: one describing changes in the morphology of the ECG and one that computes the information shared between respiration and heart rate using orthogonal subspace projection. |
Ravelo-García et al. [18] | Symbolic dynamics variables in sleep apnea screening. |
Penzel et al. [19] | Comparison of the ability of spectral analysis and detrended fluctuation analysis (DFA) to identify the CVHR in sleep apnea. |
Karandikar et al. [25] | RQA applied to HRV and to ECG Derived Respiratory (EDR) signals and different combinations to assess the classification system. |
Gutiérrez et al. [27] | Evaluation of spectral entropy (SE) and multiscale entropy (MsE) of HRV signals in sleep apnea, assessing gender differences. |
Le et al. [39] | Combination of RQA features and power spectral density (PSD), obtained from the RR series, and Support Vector Machines (SVM) to determine sleep apnea events. |
Mendez et al. [70] | Extraction of time and spectral parameters from RR series and R-peak areas by using a time-varying autoregressive model. |
Schrader et a. [71] | Analysis of the spectral components of HRV using Fourier and Wavelet Transformation with appropriate application of the Hilbert Transform. |
Al-Angari et al. [72] | Nonlinear sample entropy to assess the signal complexity of HRV. |
Maier and Dickhaus [74] | The first authors who introduced RQA in sleep apnea studies and compared the results obtained when using recurrence analysis and spectral techniques to HRV. |
Mendez et al. [75] | Comparison of system’s performance when sleep apnea is detected using empirical mode decomposition (EMD) vs. wavelet analysis (WA). |
Sharma et al. [76] | Hermite basis functions to develop a sleep apnea detection technique using the ECG. |
Cheng et al. [77] | Modified version of RQA, heterogeneous RQA (HRQA), applied to sleep apnea. |
Record | Sex | Age (Years) | Minutes | Nonapnea | Apnea | AHI (Events/h) | BMI (kg/m2) |
---|---|---|---|---|---|---|---|
a01 | M | 51 | 490 | 20 | 470 | 69.6 | 33.31 |
a02 | M | 38 | 529 | 109 | 420 | 69.5 | 37.04 |
a03 | M | 54 | 520 | 274 | 246 | 39.1 | 28.34 |
a04 | M | 52 | 493 | 40 | 453 | 77.4 | 40.43 |
b01 | F | 44 | 488 | 469 | 19 | 0.24 | 21.80 |
c01 | M | 31 | 485 | 485 | 0 | 0 | 21.86 |
c02 | M | 37 | 503 | 502 | 1 | 0 | 25.62 |
c03 | M | 39 | 455 | 455 | 0 | 0 | 19.20 |
Parameter | Control | Desaturating | Non-Desaturating | All |
---|---|---|---|---|
Sample size (male/female) | 38 (28/10) | 34 (27/7) | 11 (7/4) | 83 (62/21) |
Age (years) | 43.55 ± 12.71 | 53.97 ± 9.5 | 49.55 ± 6.68 | 48.61 ± 11.77 |
BMI (kg/m2) | 29.24 ± 6.31 | 34.36 ± 5.62 | 30.57 ± 5.98 | 31.52 ± 6.5 |
Number of arousals | 73.34 ± 28.14 | 248.85 ± 77.77 | 224.82 ± 95.59 | 165.31 ± 105.65 |
AHI (events/h) | 2.04 ± 1.35 | 57.78 ± 21.08 | 42.51 ± 18.80 | 30.24 ± 30.44 |
ODI (events/h) | 0.84 ± 0.74 | 52.07 ± 20.54 | 11.91 ± 9.85 | 23.29 ± 27.89 |
Based on Recurrence Density: | Recurrence Rate (REC) |
---|---|
Based on diagonal line structures: | Determinism (DET) Average diagonal line length (L) Length of the longest diagonal line (Lmax) Shannon Entropy (ENTR) |
Based on vertical line structures: | Laminarity (LAM) Trapping Time (TT) Maximal length of vertical lines (Vmax) |
Recurrence times: | Recurrence Time type 1 (T1) Recurrence Time type 2 (T2) Mean Recurrence Time (RT) Maximal Recurrence Time (RTmax) Minimal Recurrence Frequency (RF) Entropy of White Vertical Lines (ENTW) Recurrence Period Density Entropy (RPDE) |
Measures originating in the complex network theory: | Clustering Coefficient (Clust) Transitivity (Trans) |
Features | N(OR.) 1 | N(RED.) | ACC | SENS | SPEC | AUC |
---|---|---|---|---|---|---|
HRV | 73 | 7 | 92.71 | 92.38 | 93.3 | 0.983 |
SpO2 | 22 | 6 | 95.76 | 95.37 | 94.51 | 0.986 |
HRV + SpO2 | 95 | 12 | 96.19 | 95.74 | 95.25 | 0.990 |
Features | N(OR.) 1 | N(RED.) | ACC | SENS | SPEC | AUC |
---|---|---|---|---|---|---|
HRV | 73 | 17 | 74.639 | 82.846 | 65.888 | 0.838 |
SpO2 | 22 | 15 | 82.230 | 98.507 | 64.871 | 0.925 |
HRV + SpO2 | 95 | 24 | 82.689 | 97.967 | 66.396 | 0.930 |
Features | N(OR.) 1 | N(RED.) | ACC | SENS | SPEC | AUC |
---|---|---|---|---|---|---|
HRV | 73 | 17 | 72.230 | 72.278 | 72.205 | 0.777 |
SpO2 | 22 | 15 | 76.374 | 51.236 | 89.481 | 0.829 |
HRV + SpO2 | 95 | 24 | 77.816 | 59.786 | 87.217 | 0.847 |
Features | N(OR.) 1 | N(RED.) | ACC | SENS | SPEC | AUC |
---|---|---|---|---|---|---|
HRV | 73 | 17 | 77.220 | 78.127 | 76.904 | 0.854 |
SpO2 | 22 | 15 | 86.782 | 81.683 | 88.564 | 0.926 |
HRV + SpO2 | 95 | 24 | 87.323 | 83.812 | 88.549 | 0.934 |
HRV (7 → 6) | SpO2 (6) | HRV + SpO2 (12 → 7) |
---|---|---|
CC1 | VarSAT5m | VarSAT5m |
CC8 | VarSAT1m | VarSAT1m |
T2 | FbSAT 17 | FbSAT 1 |
CC4 | FbSAT 1 | T2 |
FbHRV 21 | FbSAT 4 | FbSAT 13 |
α1 | FbSAT 12 | FbSAT 16 |
Trans | FbSAT 17 | |
Clust | ||
TT | ||
RT | ||
RTmax | ||
FbSAT 12 |
HRV (17) | SpO2 (15 → 9) | HRV + SpO2 (24 → 17) |
---|---|---|
α1 | varSAT1m | varSAT1m |
CC1 | FbSAT 1 | Clust |
RT | FbSAT 10 | FbSAT 1 |
FbHRV 2 | FbSAT 20 | a 1 |
Clust | FbSAT 9 | Trans |
T2 | FbSAT 2 | varSAT5m |
α2 | FbSAT 17 | FbSAT 10 |
L | FbSAT 5 | FbSAT 20 |
DET | varSAT5m | DET |
CC4 | FbSAT 19 | FbSAT 9 |
FbHRV 11 | FbSAT 12 | FbSAT 5 |
LAM | FbSAT 13 | T2 |
Trans | FbSAT 7 | FbSAT 2 |
CC17 | FbSAT 15 | RT |
RTmax | FbSAT 4 | FbHRV 1 |
FbHRV 1 | LAM | |
FbHRV 15 | FbSAT 17 | |
FbSAT 12 | ||
TT | ||
Lmax | ||
FbHRV 30 | ||
ENTW | ||
FbHRV 23 | ||
FbSAT 7 |
Features | Median (Non−Apneic) | Median (Apneic) | p |
---|---|---|---|
FbHRV 21 | −5.66 (−6.35; −4.99) | −6.06 (−6.57; −5.61) | <0.0001 |
CC 1 | −0.90 (−1.52; −0.45) | −0.55 (−1.30; −0.26) | <0.001 |
CC 4 | −0.01 (−0.05; 0.04) | 0.14 (0.08; 0.19) | <0.0001 |
CC 8 | −0.07 (−0.11; −0.02) | −0.04 (−0.07; −0.02) | <0.0001 |
α1 | 1.04 (0.83; 1.31) | 1.73 (1.55; 1.83) | <0.0001 |
TT | 2.35 (2.16; 2.76) | 2.90 (2.64; 3.27) | <0.0001 |
T2 | 23.34 (21.35; 25.96) | 34.54 (31.52; 37.81) | <0.0001 |
Trans | 0.26 (0.23; 0.30) | 0.40 (0.37; 0.43) | <0.0001 |
RT | 23.21 (20.86; 26.74) | 37.71 (33.71; 42.30) | <0.0001 |
RTmax | 174 (143; 213) | 186 (154; 230) | <0.001 |
Clust | 0.28 (0.25; 0.32) | 0.43 (0.40; 0.46) | <0.0001 |
FbSAT 1 | −8.8⋅10−3 (−1.21⋅10−2; −5.9⋅10−3) | −9.48⋅10−4 (−1.2⋅10−3; −7.31⋅10−4) | <0.0001 |
FbSAT 2 | −5.38 (−5.78; −5.06) | −7.72 (−7.99; −7.45) | <0.0001 |
FbSAT 4 | −7.17 (−7.55; −6.87) | −9.16 (−9.41; −8.91) | <0.0001 |
FbSAT 12 | −9.46 (−9.86; −9.16) | −11.38 (−11.65; −11.16) | <0.0001 |
FbSAT 13 | −9.60 (−9.99; −9.28) | −11.63 (−11.89; −11.39) | <0.0001 |
FbSAT 16 | −9.97 (−10.37; −9.66) | −12.21 (−12.52; −11.93) | <0.0001 |
FbSAT 17 | −10.48 (−10.85; −10.16) | −12.00 (−12.23; −11.79) | <0.0001 |
varSAT1m | 0.21 (0.13; 0.39) | 3.58 (3.08; 3.97) | <0.0001 |
varSAT5m | 0.28 (0.20; 0.48) | 3.71 (3.41; 4.03) | <0.0001 |
Features | Median (Non−Apneic) | Median (Apneic) | p |
---|---|---|---|
FbHRV 1 | −1.53 (−2.27; −0.92) | −1.77 (−2.33; −1.19) | <0.05 |
FbHRV 2 | −1.93 (−2.42; −1.52) | −1.36 (−1.75; −1.06) | <0.0001 |
FbHRV 11 | −5.08 (−5.72; −4.45) | −5.30 (−5.86; −4.80) | <0.01 |
FbHRV 15 | −5.26 (−6.05; −4.32) | −5.59 (−6.31; −4.78) | <0.001 |
FbHRV 23 | −5.90 (−6.72; −4.96) | −6.04 (−6.73; −5.32) | NS |
FbHRV 30 | −6.43 (−7.19; −5.59) | −6.60 (−7.34; −5.74) | NS |
CC 1 | −1.36 (−1.78; −0.98) | −1.06 (−1.52; −0.80) | <0.0001 |
CC 4 | 0.06 (−0.02; 0.15) | 0.10 (0.02; 0.18) | <0.001 |
CC 17 | −0.06 (−0.08; −0.03) | −0.07 (−0.09; −0.04) | <0.05 |
α1 | 1.17 (0.94; 1.39) | 1.49 (1.32; 1.64) | <0.0001 |
α2 | 0.72 (0.50; 0.98) | 0.53 (0.36; 0.77) | <0.0001 |
DET | 0.53 (0.37; 0.67) | 0.64 (0.54; 0.75) | <0.0001 |
L | 3.08 (2.56; 3.75) | 3.55 (3.03; 4.50) | <0.0001 |
Lmax | 58 (24; 117) | 91 (53; 163) | <0.0001 |
LAM | 0.53 (0.31; 0.69) | 0.69 (0.58; 0.78) | <0.0001 |
TT | 2.54 (2.21; 2.92) | 2.82 (2.61; 3.13) | <0.0001 |
T2 | 22.55 (19.41; 26.64) | 28.93 (24.50; 33.27) | <0.0001 |
Trans | 0.27 (0.23; 0.31) | 0.33 (0.28; 0.38) | <0.0001 |
RT | 22.88 (18.91; 28.78) | 31.37 (25.84; 37.79) | <0.0001 |
RTmax | 188 (156; 224) | 197 (169; 227) | <0.001 |
ENTW | 3.52 (3.26; 3.76) | 3.61 (3.39; 3.82) | <0.001 |
Clust | 0.29 (0.25; 0.34) | 0.36 (0.30; 0.41) | <0.0001 |
FbSAT 1 | −5.8⋅10−3 (−8⋅10−3; −4⋅10−3) | −5.6⋅10−3 (−7.1⋅10−3; −4.4⋅10−3) | NS |
FbSAT 2 | −5.77 (−6.14; −5.44) | −5.82 (−6.07; −5.57) | <0.05 |
FbSAT 4 | −7.60 (−7.95;−7.28 | −7.59 (−7.84; −7.36) | NS |
FbSAT 5 | −8.12 (−8.48; −7.81) | −8.13 (−8.38; −7.90) | NS |
FbSAT 7 | −8.87 (−9.24; −8.55) | −8.91 (−9.16; −8.67) | NS |
FbSAT 9 | −9.46 (−9.81; −9.15) | −9.48 (−9.71; −9.24) | NS |
FbSAT 10 | −9.69 (−10.05; −9.37) | −9.72 (−9.97; −9.48) | NS |
FbSAT 12 | −10.11 (−10.47; −9.80) | −10.11 (−10.36; −9.87) | NS |
FbSAT 13 | −10.31 (−10.67; −10.01) | −10.32 (−10.55; −10.09) | NS |
FbSAT 15 | −10.59 (−10.96; −10.27) | −10.63 (−10.88; −10.38) | NS |
FbSAT 17 | −10.83 (−11.20; −10.49) | −10.83 (−11.09; −10.59) | NS |
FbSAT 19 | −10.95 (−11.34; −10.60) | −10.99 (−11.27; −10.74) | NS |
FbSAT 20 | −10.99 (−11.39; −10.64) | −11.02 (−11.30; −10.76) | NS |
varSAT1m | 0.20 (0.08; 0.39) | 1.97 (1.28; 2.87) | <0.0001 |
varSAT5m | 0.30 (0.18; 0.62) | 2.13 (1.47; 2.93) | <0.0001 |
Features | AHI Limit | ACC | SENS | SPEC |
---|---|---|---|---|
HRV | 5 | 63.83 | 100 | 10.53 |
10 | 76.60 | 96.43 | 47.37 | |
15 | 85.11 | 89.29 | 78.95 | |
SpO2 | 5 | 95.74 | 92.86 | 100 |
10 | 91.49 | 85.71 | 100 | |
15 | 85.11 | 75 | 100 | |
HRV and SpO2 | 5 | 95.74 | 100 | 89.47 |
10 | 93.62 | 89.29 | 100 | |
15 | 87.23 | 78.57 | 100 |
Features | Bias | Std | CI |
---|---|---|---|
HRV | −6.2489 | 9.7682 | [−25.3942, 12.8965] |
SpO2 | −2.2865 | 7.3125 | [−16.6188, 12.0458] |
HRV & SpO2 | −2.6295 | 6.5822 | [−15.5304, 10.2714] |
Works | Year | Signals | AUC | Acc (%) | Sens (%) | Spe (%) |
---|---|---|---|---|---|---|
[37] | 2004 | SpO2 | 96.55 82.70 | 95.74 78.99 | 97.02 84.82 | |
[43] | 2010 | SpO2 | 0.985 | 93.03 | 92.35 | 93.52 |
[59] | 2011 | SpO2 ECG | 94 89.97 | 94 87.69 | 94 91.18 | |
[133] | 2019 | ECG | 94.39 | 93.04 | 94.95 | |
[134] | 2019 | SpO2 | 91.33 | 98.11 | 86.98 | |
[83] | 2020 | SpO2 | 92.24 | 92.04 | 95.78 | |
[82] | 2020 | SpO2 | 95.14 | 92.36 | 97.08 | |
[135] | 2021 | ECG | 93.60 | 91.20 | 95.10 | |
[136] | 2022 | SpO2 | 0.98 | 95.97 | 95.78 | 96.09 |
Our proposal | SpO2 | 0.986 | 95.76 | 95.37 | 94.51 | |
ECG | 0.983 | 92.71 | 92.38 | 93.3 | ||
SpO2 + ECG | 0.990 | 96.19 | 95.74 | 95.25 |
Works | Dataset | Year | Signals | AUC | Acc (%) | Sens (%) | Spe (%) |
---|---|---|---|---|---|---|---|
[61] | HuGCDN2008 | 2015 | SpO2 ECG SpO2 + ECG | 0.898 0.809 0.919 | 86.5 79.4 86.9 | 75.6 42.4 73.4 | 91 94.3 92.3 |
[134] | HuGCDN2008 | 2019 | SpO2 | - | 85.3 | 82.48 | 86.28 |
[137] | HuGCDN2008 | 2020 | SpO2 | 0.86 | 88 | 80 | 91 |
[83] | HuGCDN2008 | 2020 | SpO2 | 89.32 | 74.75 | 94.44 | |
[82] | HuGCDN2008 | 2020 | SpO2 | 88.49 | 73.64 | 93.80 | |
Our proposal | HuGCDN2014-OXI | SpO2 ECG SpO2 + ECG | 0.926 0.854 0.934 | 86.78 77.22 87.32 | 81.68 78.13 83.81 | 88.56 76.90 88.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-González, S.; Ravelo-García, A.G.; Navarro-Mesa, J.L.; Hernández-Pérez, E. Combining Heart Rate Variability and Oximetry to Improve Apneic Event Screening in Non-Desaturating Patients. Sensors 2023, 23, 4267. https://doi.org/10.3390/s23094267
Martín-González S, Ravelo-García AG, Navarro-Mesa JL, Hernández-Pérez E. Combining Heart Rate Variability and Oximetry to Improve Apneic Event Screening in Non-Desaturating Patients. Sensors. 2023; 23(9):4267. https://doi.org/10.3390/s23094267
Chicago/Turabian StyleMartín-González, Sofía, Antonio G. Ravelo-García, Juan L. Navarro-Mesa, and Eduardo Hernández-Pérez. 2023. "Combining Heart Rate Variability and Oximetry to Improve Apneic Event Screening in Non-Desaturating Patients" Sensors 23, no. 9: 4267. https://doi.org/10.3390/s23094267
APA StyleMartín-González, S., Ravelo-García, A. G., Navarro-Mesa, J. L., & Hernández-Pérez, E. (2023). Combining Heart Rate Variability and Oximetry to Improve Apneic Event Screening in Non-Desaturating Patients. Sensors, 23(9), 4267. https://doi.org/10.3390/s23094267