DeSlice: An Architecture for QoE-Aware and Isolated RAN Slicing
Abstract
:1. Introduction
1.1. State-of-the-Art RAN Slicing Architectures
1.2. Paper Contributions
2. DeSlice Architecture for Improved QoE and Isolation
2.1. DeSlice Building Blocks
2.2. Cross-Layer Interaction
3. Case Study: DeSlice for Cloud VR, Video and Web Traffic Service
3.1. Scenario and Problem Statement
3.2. Proposed Solution
3.2.1. Inter-Slice Radio Resource Management
3.2.2. Intra-Slice Radio Resource Management
3.2.3. Intra-Slice Scheduling
3.2.4. Inter-Slice Scheduling: Constant Channel
3.2.5. Inter-Slice Scheduling: Dynamic Channel
Algorithm 1: Inter-Slice Scheduling |
4. Numerical Results
- Legacy (no slicing): the default 5G system and DASH video application.
- Bandwidth isolation: RAN slicing architecture considered in the papers [15,16]. To provide a fair comparison and solve the problem described in Section 3.1, we extend the NVS slicing algorithm described in [16] with the same allocation of long term shares of resources as in our solution, i.e., the shares are allocated as described in Section 3.2.1 and Section 3.2.2.
- Constant channel: DeSlice architecture with solutions described in Section 3.2 and constant channel inter-slice scheduler described in Section 3.2.4.
- Dynamic channel: DeSlice architecture with solutions described in Section 3.2 and dynamic channel inter-slice scheduler described in Section 3.2.5.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AR/VR | Augmented and Virtual Reality |
DASH | Dynamic Adaptive Streaming over HTTP |
gNB | Next-Generation NodeB |
InP | Infrastructure Provider |
IoT | Internet of Things |
MANO | Management and Orchestration |
MAC | Media Access Control |
NFV | Network Function Virtualization |
OTT | Over-the-Top |
QoE | Quality of Experience |
QoS | Quality of Service |
RAN | Radio Access Network |
RRM | Radio Resource Manager |
SRM | Slice Resource Manager |
TTI | Time-Transmission Interval |
UE | User Equipment |
References
- Series, M. IMT Vision–Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. Recommendation ITU. 2015, Volume 2083. Electronic Publication Geneva, Switzerland. Available online: https://www.itu.int/rec/R-REC-M.2083-0-201509-I/en (accessed on 16 April 2023).
- ISG NFV. Network Functions Virtualisation. An Introduction, Benefits, Enablers, Challenges and Call for Action; Technical Report; ETSI: Sophia Antipolis, France, 2012. [Google Scholar]
- Wu, Y.; Dai, H.N.; Wang, H.; Xiong, Z.; Guo, S. A survey of intelligent network slicing management for industrial IoT: Integrated approaches for smart transportation, smart energy, and smart factory. IEEE Commun. Surv. Tutor. 2022, 24, 1175–1211. [Google Scholar] [CrossRef]
- Marquez, C.; Gramaglia, M.; Fiore, M.; Banchs, A.; Costa-Perez, X. How Should I Slice My Network? A Multi-Service Empirical Evaluation of Resource Sharing Efficiency. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking (MobiCom ’18), New Delhi, India, 29 October–2 November 2018; pp. 191–206. [Google Scholar] [CrossRef]
- Fischer, A.; Botero, J.F.; Beck, M.T.; de Meer, H.; Hesselbach, X. Virtual Network Embedding: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 1888–1906. [Google Scholar] [CrossRef]
- Ojaghi, B.; Adelantado, F.; Antonopoulos, A.; Verikoukis, C. SlicedRAN: Service-Aware Network Slicing Framework for 5G Radio Access Networks. IEEE Syst. J. 2022, 16, 2556–2567. [Google Scholar] [CrossRef]
- Dangi, R.; Lalwani, P. Harris Hawks optimization based hybrid deep learning model for efficient network slicing in 5G network. Clust. Comput. 2023, 26, 1–15. [Google Scholar] [CrossRef]
- Hurtado Sánchez, J.A.; Casilimas, K.; Caicedo Rendon, O.M. Deep reinforcement learning for resource management on network slicing: A survey. Sensors 2022, 22, 3031. [Google Scholar] [CrossRef] [PubMed]
- Dangi, R.; Jadhav, A.; Choudhary, G.; Dragoni, N.; Mishra, M.K.; Lalwani, P. Ml-based 5 g network slicing security: A comprehensive survey. Future Internet 2022, 14, 116. [Google Scholar] [CrossRef]
- Javed, F.; Antevski, K.; Mangues-Bafalluy, J.; Giupponi, L.; Bernardos, C.J. Distributed ledger technologies for network slicing: A survey. IEEE Access 2022, 10, 19412–19442. [Google Scholar] [CrossRef]
- Du, J.; Jiang, B.; Jiang, C.; Shi, Y.; Han, Z. Gradient and channel aware dynamic scheduling for over-the-air computation in federated edge learning systems. IEEE J. Sel. Areas Commun. 2023, 41, 1035–1050. [Google Scholar] [CrossRef]
- Nadeem, L.; Azam, M.A.; Amin, Y.; Al-Ghamdi, M.A.; Chai, K.K.; Khan, M.F.N.; Khan, M.A. Integration of D2D, network slicing, and MEC in 5G cellular networks: Survey and challenges. IEEE Access 2021, 9, 37590–37612. [Google Scholar] [CrossRef]
- Gonzalez, A.J.; Ordonez-Lucena, J.; Helvik, B.E.; Nencioni, G.; Xie, M.; Lopez, D.R.; Grønsund, P. The isolation concept in the 5G network slicing. In Proceedings of the 2020 European Conference on Networks and Communications (EuCNC), Dubrovnik, Croatia, 15–18 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 12–16. [Google Scholar]
- Marquez, C.; Gramaglia, M.; Fiore, M.; Banchs, A.; Costa-Pérez, X. Resource Sharing Efficiency in Network Slicing. IEEE Trans. Netw. Serv. Manag. 2019, 16, 909–923. [Google Scholar] [CrossRef]
- Tun, Y.K.; Tran, N.H.; Ngo, D.T.; Pandey, S.R.; Han, Z.; Hong, C.S. Wireless Network Slicing: Generalized Kelly Mechanism-Based Resource Allocation. IEEE J. Sel. Areas Commun. 2019, 37, 1794–1807. [Google Scholar] [CrossRef]
- Kokku, R.; Mahindra, R.; Zhang, H.; Rangarajan, S. NVS: A Virtualization Substrate for WiMAX Networks. In Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking (MobiCom ’10), Chicago, IL, USA, 20–24 September 2010; pp. 233–244. [Google Scholar] [CrossRef]
- Schmidt, R.; Chang, C.Y.; Nikaein, N. FlexVRAN: A Flexible Controller for Virtualized RAN Over Heterogeneous Deployments. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Afolabi, I.; Taleb, T.; Frangoudis, P.A.; Bagaa, M.; Ksentini, A. Network Slicing-Based Customization of 5G Mobile Services. IEEE Netw. 2019, 33, 134–141. [Google Scholar] [CrossRef]
- Papa, A.; Jano, A.; Ayvaşık, S.; Ayan, O.; Gürsu, H.M.; Kellerer, W. User-based quality of service aware multi-cell radio access network slicing. IEEE Trans. Netw. Serv. Manag. 2021, 19, 756–768. [Google Scholar] [CrossRef]
- Khorov, E.; Tang, S. xStream: A new platform for Application-aware Adaptive Network Slicing in 5G Systems (Tutorial). In Proceedings of the IEEE Global Information Infrastructure and Networking Symposium (GIIS 2018), Thessaloniki, Greece, 23–25 October 2018. [Google Scholar]
- Akyildiz, I.F.; Khorov, E.; Kiryanov, A.; Kovkov, D.; Krasilov, A.; Liubogoshchev, M.; Shmelkin, D.; Tang, S. xStream: A New Platform Enabling Communication between Applications and the 5G Network. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Henry, J.; Szigeti, T. Diffserv to QCI Mapping-01. Diffserv to QCI Mapping-01. IETF Internet-Draft, 2019. Available online: https://datatracker.ietf.org/doc/draft-henry-tsvwg-diffserv-to-qci/ (accessed on 16 April 2023).
- 3GPP. 3GPP TS 23.139 Group Services and System Aspects; 3GPP System—Fixed Broadband Access Network Interworking; (Release 12); 3GPP: Biot, France, 2015. [Google Scholar]
- Li, F.; Razaghpanah, A.; Kakhki, A.M.; Niaki, A.A.; Choffnes, D.; Gill, P.; Mislove, A. lib•erate, (n) a library for exposing (traffic-classification) rules and avoiding them efficiently. In Proceedings of the 2017 Internet Measurement Conference, London, UK, 1–3 November 2017; pp. 128–141. [Google Scholar]
- Shamsimukhametov, D.; Kurapov, A.; Liubogoshchev, M.; Khorov, E. Is Encrypted ClientHello a Challenge for Traffic Classification? IEEE Access 2022, 10, 77883–77897. [Google Scholar] [CrossRef]
- Azab, A.; Khasawneh, M.; Alrabaee, S.; Choo, K.K.R.; Sarsour, M. Network traffic classification: Techniques, datasets, and challenges. Digit. Commun. Netw. 2022, in press. [CrossRef]
- ISO/IEC 23009-5:2017; Information Technology—Dynamic Adaptive Streaming over HTTP(DASH)—Part 5: Server and Network Assisted DASH (SAND). ISO: Geneva, Switzerland, 2017.
- 3GPP. 3GPP TS 26.348 Northbound Application Programming Interface (API) for Multimedia Broadcast/Multicast Service (MBMS) at the xMB Reference Point; (Release 16); 3GPP: Biot, France, 2020. [Google Scholar]
- Recommendation G.1030; Series G: Transmission Systems and Media, Digital Systems and Networks. Multimedia Quality of Service and Performance—Generic and User-Related Aspects. Estimating End-to-End Performance in IP Networks for Data Applications. ITU-T: Geneva, Switzerland, 2014.
- MPEG. ISO/IEC 23009-1:2014; MPEG-DASH 2nd Edition Specification. Technical Report; ISO: Geneva, Switzerland, 2014.
- VMAF: The Journey Continues. Available online: https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12 (accessed on 14 April 2023).
- Seufert, M.; Egger, S.; Slanina, M.; Zinner, T.; Hoßfeld, T.; Tran-Gia, P. A survey on quality of experience of HTTP adaptive streaming. IEEE Commun. Surv. Tutor. 2014, 17, 469–492. [Google Scholar] [CrossRef]
- Huawei. White Paper for 5G Cloud VR Service Experience Standards; Technical Report; Huawei: Shenzhen, China, 2019. [Google Scholar]
- Khorov, E.; Krasilov, A.; Liubogoshchev, M.; Tang, S. SEBRA: SAND-enabled bitrate and resource allocation algorithm for network-assisted video streaming. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Kleinrock, L. Theory, Queueing Systems; Wiley-Interscience: Hoboken, NJ, USA, 1975. [Google Scholar]
- Basukala, R.; Ramli, H.M.; Sandrasegaran, K. Performance analysis of EXP/PF and M-LWDF in downlink 3GPP LTE system. In Proceedings of the 2009 First Asian Himalayas International Conference on Internet, Kathmundu, Nepal, 3–5 November 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Khawam, K.; Kofman, D.; Altman, E. The Weighted Proportional Fair Scheduler. In Proceedings of the 3rd International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QShine ’06), Waterloo, ON, Canada, 7–9 August 2006; p. 43-es. [Google Scholar] [CrossRef]
- Network Simulator 3 (NS-3). Available online: https://www.nsnam.org/ (accessed on 14 April 2023).
- HTTP Archive. Available online: https://httparchive.org/ (accessed on 15 March 2023).
- Ragimova, K.; Loginov, V.; Khorov, E. Analysis of YouTube DASH Traffic. In Proceedings of the 2019 IEEE BlackSeaCom, Sochi, Russia, 3–6 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Pico Neo 2. Available online: https://www.picoxr.com/uk/products/g2-4k (accessed on 14 April 2023).
Parameter | Value |
---|---|
Channel | 20 MHz @ 2 GHz |
Channel model | 3GPP TR 38.901 EPA |
gNB/UE TX power | dBm |
gNB antenna type | Omni-directional |
gNB height | 30 m |
UE height | 1 m |
TTI duration | 1 ms |
Wired connection capacity | 10 Gbps |
Duration of simulation run | 1000 s |
Number of simulation runs | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liubogoshchev, M.; Zudin, D.; Krasilov, A.; Krotov, A.; Khorov, E. DeSlice: An Architecture for QoE-Aware and Isolated RAN Slicing. Sensors 2023, 23, 4351. https://doi.org/10.3390/s23094351
Liubogoshchev M, Zudin D, Krasilov A, Krotov A, Khorov E. DeSlice: An Architecture for QoE-Aware and Isolated RAN Slicing. Sensors. 2023; 23(9):4351. https://doi.org/10.3390/s23094351
Chicago/Turabian StyleLiubogoshchev, Mikhail, Dmitry Zudin, Artem Krasilov, Alexander Krotov, and Evgeny Khorov. 2023. "DeSlice: An Architecture for QoE-Aware and Isolated RAN Slicing" Sensors 23, no. 9: 4351. https://doi.org/10.3390/s23094351
APA StyleLiubogoshchev, M., Zudin, D., Krasilov, A., Krotov, A., & Khorov, E. (2023). DeSlice: An Architecture for QoE-Aware and Isolated RAN Slicing. Sensors, 23(9), 4351. https://doi.org/10.3390/s23094351