Wireless Sensor Networks for Precision Agriculture: A Review of NPK Sensor Implementations
Abstract
:1. Introduction
2. Layout of Sensor Networks
2.1. Horizontal Layout
2.2. Vertical Layout
2.3. Hybrid Layout
3. Data Transmission Methods
4. Monitoring Nutrition with NPK Sensors
5. Results
5.1. Wireless Sensor Networks in Precision Agriculture
5.2. Nutrient Management and NPK Sensor Monitoring
5.3. Implementation of NPK Sensors in WSNs
5.4. Benefits and Challenges
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madhumathi, R.; Arumuganathan, T.; Shruthi, R. Soil NPK and Moisture analysis using Wireless Sensor Networks. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Khelifi, F. Monitoring System Based in Wireless Sensor Network for Precision Agriculture. In Internet of Things (IoT): Concepts and Applications; Alam, M., Shakil, K.A., Khan, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 461–472. [Google Scholar] [CrossRef]
- Postolache, S.; Sebastião, P.; Viegas, V.; Postolache, O.; Cercas, F. IoT-Based Systems for Soil Nutrients Assessment in Horticulture. Sensors 2022, 23, 403. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Sudduth, K.A.; Hummel, J.W.; Drummond, S.T. Validation Testing of a Soil Macronutrient Sensing System. Trans. ASABE 2013, 56, 23–31. [Google Scholar] [CrossRef]
- Abukmeil, R.; Al-Mallahi, A.A.; Campelo, F. New approach to estimate macro and micronutrients in potato plants based on foliar spectral reflectance. Comput. Electron. Agric. 2022, 198, 107074. [Google Scholar] [CrossRef]
- Zhang, B.; Meng, L. Energy Efficiency Analysis of Wireless Sensor Networks in Precision Agriculture Economy. Sci. Program. 2021, 2021, e8346708. [Google Scholar] [CrossRef]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef]
- Mancuso, M.; Bustaffa, F. A wireless sensors network for monitoring environmental variables in a tomato greenhouse. In Proceedings of the 2006 IEEE International Workshop on Factory Communication Systems, Turin, Italy, 28–30 June 2006; pp. 107–110. [Google Scholar] [CrossRef]
- Ferentinos, K.P.; Tsiligiridis, T.A. Adaptive design optimization of wireless sensor networks using genetic algorithms. Comput. Netw. 2007, 51, 1031–1051. [Google Scholar] [CrossRef]
- Quynh, T.N.; Nien, L.M.; Khoi, N.N. Multipath RPL protocols for greenhouse environment monitoring system based on Internet of Things. In Proceedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Hua Hin, Thailand, 24–27 June 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Rubanga, D.; Hatanaka, K.; Shimada, S. Development of a Simplified Smart Agriculture System for Small-scale Greenhouse Farming. Sens. Mater. 2019, 31, 831. [Google Scholar] [CrossRef]
- Mamun, Q. A Tessellation-Based Localized Chain Construction Scheme for Chain-Oriented Sensor Networks. Sens. J. IEEE 2013, 13, 2648–2658. [Google Scholar] [CrossRef]
- Poe, W.Y.; Schmitt, J.B. Node deployment in large wireless sensor networks: Coverage, energy consumption, and worst-case delay. In Proceedings of the Asian Internet Engineering Conference on—AINTEC ’09, Bangkok, Thailand, 18–20 November 2009; pp. 77–84. [Google Scholar] [CrossRef]
- Kochhar, A.; Kumar, N. Wireless sensor networks for greenhouses: An end-to-end review. Comput. Electron. Agric. 2019, 163, 104877. [Google Scholar] [CrossRef]
- Raheemah, A.; Sabri, N.; Salim, M.; Ehkan, P.; Ahmad, R.B. New empirical path loss model for wireless sensor networks in mango greenhouses. Comput. Electron. Agric. 2016, 127, 553–560. [Google Scholar] [CrossRef]
- Liao, M.S.; Chen, S.F.; Chou, C.Y.; Chen, H.Y.; Yeh, S.H.; Chang, Y.C.; Jiang, J.A. On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system. Comput. Electron. Agric. 2017, 136, 125–139. [Google Scholar] [CrossRef]
- Jiang, J.A.; Wang, C.H.; Liao, M.S.; Zheng, X.Y.; Liu, J.H.; Chuang, C.L.; Hung, C.L.; Chen, C.P. A wireless sensor network-based monitoring system with dynamic convergecast tree algorithm for precision cultivation management in orchid greenhouses. Precis. Agric. 2016, 17, 766–785. [Google Scholar] [CrossRef]
- Yang, C.; Yuling, S.; Zhongyi, W.; Lan, H. Connectivity of wireless sensor networks in greenhouse for plant growth. Int. J. Agric. Biol. Eng. 2016, 9, 89–98. [Google Scholar]
- López Riquelme, J.; Soto, F.; Suardíaz, J.; Sánchez, P.; Iborra, A.; Vera, J. Wireless Sensor Networks for precision horticulture in Southern Spain. Comput. Electron. Agric. 2009, 68, 25–35. [Google Scholar] [CrossRef]
- Akkaş, M.A.; Sokullu, R. An IoT-based greenhouse monitoring system with Micaz motes. Procedia Comput. Sci. 2017, 113, 603–608. [Google Scholar] [CrossRef]
- Lixuan, W.; Hong, S.; Minzan, L.; Meng, Z.; Yi, Z. An On-Line Monitoring System of Crop Growth in Greenhouse. In Computer and Computing Technologies in Agriculture VIII; Li, D., Chen, Y., Eds.; IFIP Advances in Information and Communication Technology; Springer International Publishing: Cham, Switzerland, 2015; Volume 452, pp. 627–637. [Google Scholar] [CrossRef]
- Pahuja, R.; Verma, H.; Uddin, M. A Wireless Sensor Network for Greenhouse Climate Control. IEEE Pervasive Comput. 2013, 12, 49–58. [Google Scholar] [CrossRef]
- Harris, N.; Cranny, A.; Rivers, M.; Smettem, K.; Barrett-Lennard, E.G. Application of Distributed Wireless Chloride Sensors to Environmental Monitoring: Initial Results. IEEE Trans. Instrum. Meas. 2016, 65, 736–743. [Google Scholar] [CrossRef]
- Srbinovska, M.; Gavrovski, C.; Dimcev, V.; Krkoleva, A.; Borozan, V. Environmental parameters monitoring in precision agriculture using wireless sensor networks. J. Clean. Prod. 2015, 88, 297–307. [Google Scholar] [CrossRef]
- Zou, W.; Yao, F.; Zhang, B.; He, C.; Guan, Z. Verification and predicting temperature and humidity in a solar greenhouse based on convex bidirectional extreme learning machine algorithm. Neurocomputing 2017, 249, 72–85. [Google Scholar] [CrossRef]
- Sabri, N.; Aljunid, S.; Ahmad, R.; Yahya, A.; Kamaruddin, R.; Salim, M. Wireless Sensor Actor Network Based on Fuzzy Inference System for Greenhouse Climate Control. J. Appl. Sci. 2011, 11, 3104–3116. [Google Scholar] [CrossRef]
- Rishi, R.; Kumar, D. Prototype Design of Indigenous GSM based Intelligent Irrigation System. Int. J. Comput. Appl. 2013, 73, 36–39. [Google Scholar] [CrossRef]
- Yu, P.; Yong, X.; Xi-yuan, P. GEMS: A WSN-based greenhouse environment monitoring system. In Proceedings of the 2011 IEEE International Instrumentation and Measurement Technology Conference, Hangzhou, China, 10–12 May 2011; pp. 1–6. [Google Scholar] [CrossRef]
- López-Martínez, J.; Blanco-Claraco, J.L.; Pérez-Alonso, J.; Callejón-Ferre, A.J. Distributed network for measuring climatic parameters in heterogeneous environments: Application in a greenhouse. Comput. Electron. Agric. 2018, 145, 105–121. [Google Scholar] [CrossRef]
- Aiello, G.; Giovino, I.; Vallone, M.; Catania, P.; Argento, A. A decision support system based on multisensor data fusion for sustainable greenhouse management. J. Clean. Prod. 2018, 172, 4057–4065. [Google Scholar] [CrossRef]
- Ferentinos, K.P.; Katsoulas, N.; Tzounis, A.; Bartzanas, T.; Kittas, C. Wireless sensor networks for greenhouse climate and plant condition assessment. Biosyst. Eng. 2017, 153, 70–81. [Google Scholar] [CrossRef]
- Kuroda, M.; Ibayashi, H.; Mineno, H. Affordable 400 MHz long-haul sensor network for greenhouse horticulture. In Proceedings of the 2015 International Conference on Information Networking (ICOIN), Cambodia, 12–14 January 2015; pp. 19–24. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Z.; Sheng, L.; Wang, Z. Reliable Data Fusion of Hierarchical Wireless Sensor Networks with Asynchronous Measurement for Greenhouse Monitoring. IEEE Trans. Control. Syst. Technol. 2019, 27, 1036–1046. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, J.; Mei, L.; Ding, Z.; Feng, W.; Wang, L. Design and Development of Intelligent Monitoring System for Plastic Tea Greenhouse. In Computer and Computing Technologies in Agriculture VII; Li, D., Chen, Y., Eds.; IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 419, pp. 443–449. [Google Scholar] [CrossRef]
- Sindhuja, R.; Krithiga, B. Soil Nutrient Identification Using Arduino. Asian J. Appl. Sci. Technol. (AJAST) 2017, 1, 40–42. Available online: https://ajast.net/data/uploads/4ajast-10.pdf (accessed on 1 September 2023).
- Shylaja, S.N.; Veena, M.B. Real-time monitoring of soil nutrient analysis using WSN. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 3059–3062. [Google Scholar] [CrossRef]
- Ganeshamurthy, A.N.; Rupa, T.R.; Kalaivanan, D.; Raghupathi, H.B.; Satisha, G.C.; Rao, G.S.; Kumar, M.B.M. Fertiliser Management Practices for Horticultural Crops. Indian J. Fertil. 2016, 12, 66–81. [Google Scholar]
Transmission Modules and Range | Frequency and Data Rate | Node | Cost and Energy | Communication Type |
---|---|---|---|---|
Zigbee (10–20 m) | 2.4 GHz (20–250 Kbps) | 65,000 nodes per network | L and L | Peer to peer |
GPRS (in range of mobile network area) | 900–1800 MHz (56–114 Kbps) | 1000 nodes per network | H and H | Base station to device |
LoRa (>10 Km) | 169 MHz, 868 MHz, and 433 MHz (0.3–50 Kbps) | 10,000 nodes per gateway | M and L | Peer to peer |
Bluetooth (1–100 m) | 2.4–2.485 GHz (1–3 Mbps) | 8 active nodes per piconet | L and M | Master–slave and peer to peer |
WiFi (20–100 m) | 2.4 GHz (2–54 Gbps) | 32 nodes per network | H and H | Access point to device |
Xstream (5–16 Km) | 2.4 GHz (10–20 Kbps) | 7 channels, 65,000/channels | L and L | Peer to peer |
Level | Range (kg/ha) | ||
---|---|---|---|
Nitrogen | Phosphorus | Potassium | |
Low | 0–280 | 0–11 | 0–118 |
Medium | 280–450 | 11–22 | 118–280 |
High | >450 | >22 | >280 |
Crops | Recommended Dose of NPK (kg/ha) | ||
---|---|---|---|
Nitrogen (N) | Phosphorus (PO) | Potassium (KO) | |
Fruit Crops | |||
Banana | 620 | 310 | 620 |
Mango | 75 | 20 | 70 |
Citrus | 110 | 35 | 55 |
Papaya | 925 | 925 | 925 |
Guava | 250 | 175 | 175 |
Apple | 320 | 320 | 320 |
Pineapple | 275 | 70 | 200 |
Sapota | 100 | 50 | 50 |
Grapes | 300 | 300 | 600 |
Pomegranate | 500 | 425 | 975 |
Litchi | 50 | 50 | 25 |
Vegetable Crops | |||
Potato | 60 | 100 | 120 |
Tomato | 180 | 120 | 150 |
Onion | 125 | 75 | 125 |
Brinjal | 180 | 150 | 120 |
Tapioca | 45 | 90 | 120 |
Cabbage | 150 | 125 | 100 |
Cauliflower | 150 | 100 | 100 |
Okra | 100 | 50 | 50 |
Peas | 25 | 75 | 60 |
Sweet Potato | 20 | 40 | 60 |
Chilli | 150 | 75 | 75 |
Plantation Crops | |||
Coconut | 100 | 55 | 210 |
Cashewnut | 100 | 40 | 60 |
Arecanut | 140 | 55 | 200 |
Cocoa | 70 | 30 | 100 |
Spice Crops | |||
Garlic | 40 | 75 | 75 |
Turmeric | 150 | 60 | 108 |
Ginger | 37.5 | 50 | 37.5 |
Cumin | 30 | 20 | 20 |
Coriander | 10 | 40 | 20 |
Tamarind | 20 | 15 | 25 |
Fenugreek | 30 | 25 | 40 |
Fennel | 50 | 10 | 10 |
Pepper | 110 | 50 | 155 |
Cardamom | 75 | 75 | 150 |
Ajwan | 40 | 20 | 20 |
Nutmeg | 187.5 | 187.5 | 600 |
Area Soil Sampling | N | P | K | pH | EC | Moisture | Temp. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IL | OS | IL | OS | IL | OS | IL | OS | IL | OS | IL | OS | IL | OS | |
A | 43 | 27 | 70 | 110 | 145 | 103 | 6 | 5 | 469 | 318 | 48 | 52 | 28 | |
B | 33 | 14 | 51 | 79 | 98 | 72 | 7 | 5 | 349 | 254 | 47 | 51 | 28 | 27 |
C | 43 | 35 | 72 | 128 | 140 | 121 | 6 | 4 | 441 | 356 | 50 | 64 | 28 | 28 |
D | 5 | 4 | 515 | 310 | 47 | 56 | 29 | 28 | 44 | 226 | 73 | 106 | 160 | 99 |
Average | 31 | 20 | 177 | 157 | 108 | 88 | 12 | 10 | 326 | 289 | 55 | 68 | 61 | 45 |
Error | 5.46% | 10.13% | 9.75% | 0.69% | 18.63% | 6.88% | 7.76% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musa, P.; Sugeru, H.; Wibowo, E.P. Wireless Sensor Networks for Precision Agriculture: A Review of NPK Sensor Implementations. Sensors 2024, 24, 51. https://doi.org/10.3390/s24010051
Musa P, Sugeru H, Wibowo EP. Wireless Sensor Networks for Precision Agriculture: A Review of NPK Sensor Implementations. Sensors. 2024; 24(1):51. https://doi.org/10.3390/s24010051
Chicago/Turabian StyleMusa, Purnawarman, Herik Sugeru, and Eri Prasetyo Wibowo. 2024. "Wireless Sensor Networks for Precision Agriculture: A Review of NPK Sensor Implementations" Sensors 24, no. 1: 51. https://doi.org/10.3390/s24010051
APA StyleMusa, P., Sugeru, H., & Wibowo, E. P. (2024). Wireless Sensor Networks for Precision Agriculture: A Review of NPK Sensor Implementations. Sensors, 24(1), 51. https://doi.org/10.3390/s24010051