Design and Development of Large-Band Dual-MSFA Sensor Camera for Precision Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Sensor
- Minimum pixel size needed to be greater than 4 µm; this was a limitation caused by the COLOR SHADES® Filter technology, which was used to create the MSFA filters;
- The CMOS sensor resolution had to be high enough to compensate the loss related to the MSFA system (i.e., sensor resolution > 1 k);
- The spectral sensitivity of the sensor was required to be extended to the near-infrared range (i.e., 380–1000 nm);
- Quantum efficiency was very good in the chosen spectral band;
- Integration time was variable.
2.2. Band Selection
- The area was centered around 550 nm and was all-around green, the most important color in the field;
- The area of near infrared, which was promising for the estimations based on the amount of chlorophyll in the plant leaves.
2.3. MSFA Sensor Technology
2.4. Hybridation of MSFA and Image Sensor
2.5. Driving Board
- Receive the video stream (48-bit) from the sensor board;
- De-serialize the data into a single stream;
- Detect the pixel flow (timing detector);
- Control and prepare the data for simultaneous input and output;
- Generate a pixel flow (timing generator);
- Send data to communication gates (HDMI/VGA).
2.6. Sensor Analysis and Characterization
- Verifying energy balancing, which is important in order to provide the same factors for a polychromatic light so that a software correction can be provided;
- Analyzing the impact of rejecting bands, which sometimes occur when using the Fabry–Pérot system. In this case, the impact of the addition of a band pass filter to the hybrid sensor needed to be analyzed;
- Analysis of the MSFA positioning impact and the crosstalk between the MSFA and the image sensor;
- Considering the need to amplify the signal or change the nature of the substrate used for MSFA development.
2.7. Assembly and Build-Up
2.8. Demosaicking and Image Reconstruction
3. Results and Discussion
3.1. CMOS Sensitivity
3.2. Spectral Bands
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shinoda, K.; Yanagi, Y.; Hayasaki, Y.; Hasegawa, M. Multispectral filter array design without training images. Opt. Rev. 2017, 24, 554–571. [Google Scholar] [CrossRef]
- Genser, N.; Seiler, J.; Kaup, A. Camera Array for Multi-Spectral Imaging. IEEE Trans. Image Process. 2020, 29, 9234–9249. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.-B.; Lapray, P.-J.; Gouton, P. HDR Imaging Pipeline for Spectral Filter Array Cameras. In Proceedings of the Scandinavian Conference on Image Analysis, Tromsø, Norway, June 12–14 2017; Springer: Cham, Switzerland, 2017; pp. 401–412. [Google Scholar]
- Chang, J.; Clay, S.A.; Clay, D.E.; Dalsted, K. Detecting weed-free and weed-infested areas of a soybean field using near-infrared spectral data. Weed Sci. 2004, 52, 642–648. [Google Scholar] [CrossRef]
- Wójtowicz, M.; Wójtowicz, A.; Piekarczyk, J. Application of remote sensing methods in agriculture. Commun. Biometry Crop Sci. 2016, 11, 31–50. [Google Scholar]
- Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Pott, L.P.; Amado, T.J.C.; Schwalbert, R.A.; Sebem, E.; Jugulam, M.; Ciampitti, I.A. Pre-planting weed detection based on ground field spectral data. Pest Manag. Sci. 2020, 76, 1173–1182. [Google Scholar] [CrossRef]
- Prananto, J.A.; Minasny, B.; Weaver, T. Near Infrared (NIR) Spectroscopy as a Rapid and Cost-Effective Method for Nutrient Analysis of Plant Leaf Tissues. Adv. Agron. 2020, 164, 1–49. [Google Scholar]
- Sarić, R.; Nguyen, V.D.; Burge, T.; Berkowitz, O.; Trtílek, M.; Whelan, J.; Lewsey, M.G.; Čustović, E. Applications of hyperspectral imaging in plant phenotyping. Trends Plant Sci. 2022, 27, 301–315. [Google Scholar] [CrossRef]
- Beeri, O.; Peled, A. Spectral indices for precise agriculture monitoring. Int. J. Remote Sens. 2006, 27, 2039–2047. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Rumpf, T.; Welke, P.; Dehne, H.-W.; Plümer, L.; Steiner, U.; Oerke, E.-C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Huang, W.; Guan, Q.; Luo, J.; Zhang, J.; Zhao, J.; Liang, D.; Huang, L.; Zhang, D. New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2516–2524. [Google Scholar] [CrossRef]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Owomugisha, G.; Melchert, F.; Mwebaze, E.; Quinn, J.A.; Biehl, M. Machine learning for diagnosis of disease in plants using spectral data. In Proceedings of the International Conference on Artificial Intelligence (ICAI), The Steering Committee of the World Congress in Computer Science, Computer, Stockholm, Sweden, 13–19 July 2018; pp. 9–15. [Google Scholar]
- Owomugisha, G.; Nuwamanya, E.; Quinn, J.A.; Biehl, M.; Mwebaze, E. Early detection of plant diseases using spectral data. In Proceedings of the APPIS 2020: 3rd International Conference on Applications of Intelligent Systems, Las Palmas de Gran Canaria, Spain, 7–9 January 2020; pp. 1–6. [Google Scholar]
- Feng, L.; Wu, B.; Zhu, S.; Wang, J.; Su, Z.; Liu, F.; He, Y.; Zhang, C. Investigation on Data Fusion of Multisource Spectral Data for Rice Leaf Diseases Identification Using Machine Learning Methods. Front. Plant Sci. 2020, 11, 577063. [Google Scholar] [CrossRef]
- Bradley, B.A. Remote detection of invasive plants: A review of spectral, textural and phenological approaches. Biol. Invasion 2014, 16, 1411–1425. [Google Scholar] [CrossRef]
- Shirzadifar, A.; Bajwa, S.; Mireei, S.A.; Howatt, K.; Nowatzki, J. Weed species discrimination based on SIMCA analysis of plant canopy spectral data. Biosyst. Eng. 2018, 171, 143–154. [Google Scholar] [CrossRef]
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. Front. Plant Sci. 2017, 8, 537. [Google Scholar] [CrossRef]
- Taha, M.F.; ElManawy, A.I.; Alshallash, K.S.; ElMasry, G.; Alharbi, K.; Zhou, L.; Liang, N.; Qiu, Z. Using Machine Learning for Nutrient Content Detection of Aquaponics-Grown Plants Based on Spectral Data. Sustainability 2022, 14, 12318. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants. Comput. Electron. Agric. 2019, 163, 104860. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Tardaguila, J.; Fernández-Novales, J.; Diago, M.P. Data mining and NIR spectroscopy in viticulture: Applications for plant phenotyping under field conditions. Sensors 2016, 16, 236. [Google Scholar] [CrossRef]
- Zhang, B.; Dai, D.; Huang, J.; Zhou, J.; Gui, Q.; Dai, F. Influence of physical and biological variability and solution methods in fruit and vegetable quality nondestructive inspection by using imaging and near-infrared spectroscopy techniques: A review. Crit. Rev. Food Sci. Nutr. 2017, 58, 2099–2118. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Luo, X.; Zhang, X.; Passos, D.; Xie, L.; Rao, X.; Xu, H.; Ting, K.C.; Lin, T.; Ying, Y. A deep learning approach to im-proving spectral analysis of fruit quality under interseason variation. Food Control 2022, 140, 109108. [Google Scholar] [CrossRef]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.-K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant Dis. Prot. 2018, 125, 5–20. [Google Scholar] [CrossRef]
- Shapira, U.; Herrmann, I.; Karnieli, A.; Bonfil, D.J. Field spectroscopy for weed detection in wheat and chickpea fields. Int. J. Remote Sens. 2013, 34, 6094–6108. [Google Scholar] [CrossRef]
- Kise, M.; Park, B.; Heitschmidt, G.W.; Lawrence, K.C.; Windham, W.R. Multispectral imaging system with inter-changeable filter design. Comput. Electron. Agric. 2010, 72, 61–68. [Google Scholar] [CrossRef]
- Frey, L.; Masarotto, L.; Armand, M.; Charles, M.-L.; Lartigue, O. Multispectral interference filter arrays with compensation of angular dependence or extended spectral range. Opt. Express 2015, 23, 11799–11812. [Google Scholar] [CrossRef]
- Bolton, F.J.; Bernat, A.S.; Bar-Am, K.; Levitz, D.; Jacques, S. Portable, low-cost multispectral imaging system: Design, development, validation, and utilization. J. Biomed. Opt. 2018, 23, 121612. [Google Scholar] [CrossRef]
- Shinoda, K.; Yoshiba, S.; Hasegawa, M. Deep demosaicking for multispectral filter arrays. arXiv 2018, arXiv:1808.08021. [Google Scholar]
- Gutiérrez, S.; Wendel, A.; Underwood, J. Spectral filter design based on in-field hyperspectral imaging and machine learning for mango ripeness estimation. Comput. Electron. Agric. 2019, 164, 104890. [Google Scholar] [CrossRef]
- Abbas, K.; Puigt, M.; Delmaire, G.; Roussel, G. Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Habtegebrial, T.A.; Reis, G.; Stricker, D. Deep convolutional networks for snapshot hypercpectral demosaicking. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; pp. 1–5. [Google Scholar]
- Li, P.; Ebner, M.; Noonan, P.; Horgan, C.; Bahl, A.; Ourselin, S.; Shapey, J.; Vercauteren, T. Deep learning approach for hyperspectral image demosaicking, spectral correction and high-resolution RGB reconstruction. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2022, 10, 409–417. [Google Scholar] [CrossRef]
- Dijkstra, K.; van de Loosdrecht, J.; Schomaker, L.R.; Wiering, M.A. Hyperspectral demosaicking and crosstalk correction using deep learning. Mach. Vis. Appl. 2019, 30, 1–21. [Google Scholar] [CrossRef]
- Ma, X.; Tan, M.; Zhang, S.; Liu, S.; Sun, J.; Han, Y.; Li, Q.; Yang, Y. A snapshot near-infrared hyperspectral demosaicing method with convolutional neural networks in low illumination environment. Infrared Phys. Technol. 2023, 129, 104510. [Google Scholar] [CrossRef]
- Sun, B.; Yuan, N.; Cao, C.; Hardeberg, J.Y. Design of four-band multispectral imaging system with one single-sensor. Future Gener. Comput. Syst. 2018, 86, 670–679. [Google Scholar] [CrossRef]
- Cao, A.; Pang, H.; Zhang, M.; Shi, L.; Deng, Q.; Hu, S. Design and Fabrication of an Artificial Compound Eye for Multi-Spectral Imaging. Micromachines 2019, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, Y.; Ganesan, K.; Ahnood, A.; Beckett, P.; Eftekhari, F.; Smith, D.; Uddin, M.H.; Skafidas, E.; Nirmalathas, A.; et al. A single sensor based multispectral imaging camera using a narrow spectral band color mosaic integrated on the monochrome CMOS image sensor. APL Photonics 2020, 5, 046104. [Google Scholar] [CrossRef]
- Ansari, K.; Thomas, J.-B.; Gouton, P. Spectral band Selection Using a Genetic Algorithm Based Wiener Filter Estimation Method for Reconstruction of Munsell Spectral Data. Biol. Imaging 2017, 29, 190–193. [Google Scholar] [CrossRef]
- Thomas, J.-B.; Lapray, P.-J.; Gouton, P.; Clerc, C. Spectral Characterization of a Prototype SFA Camera for Joint Visible and NIR Acquisition. Sensors 2016, 16, 993. [Google Scholar] [CrossRef]
- Houssou, M.E.E.; Mahama, A.T.S.; Gouton, P.; Degla, G. Robust Facial Recognition System using One Shot Multispectral Filter Array Acquisition System. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 25–33. [Google Scholar] [CrossRef]
- Yang, C.-M.; Cheng, C.-H.; Chen, R.-K. Changes in Spectral Characteristics of Rice Canopy Infested with Brown Planthopper and Leaffolder. Crop Sci. 2007, 47, 329–335. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, G.; Pan, Y.; Yang, X.; Chen, L.; Zhao, C. A review of advanced technologies and development for hyperspec-tral-based plant disease detection in the past three decades. Remote Sens. 2020, 12, 3188. [Google Scholar] [CrossRef]
- Huang, J.; Liao, H.; Zhu, Y.; Sun, J.; Sun, Q.; Liu, X. Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis). Comput. Electron. Agric. 2012, 82, 100–107. [Google Scholar] [CrossRef]
- Khaled, A.Y.; Abd Aziz, S.; Bejo, S.K.; Nawi, N.M.; Seman, I.A.; Onwude, D.I. Early detection of diseases in plant tissue using spectroscopy—Applications and limitations. Appl. Spectrosc. Rev. 2018, 53, 36–64. [Google Scholar] [CrossRef]
- Qin, J.; Burks, T.F.; Kim, M.S.; Chao, K.; Ritenour, M.A. Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sens. Instrum. Food Qual. Saf. 2008, 2, 168–177. [Google Scholar] [CrossRef]
- Stemmler, S. Development of a high-speed, high-resolution multispectral camera system for airborne applications. In Proceedings of the Multimodal Sensing and Artificial Intelligence: Technologies and Applications II, Online, 26–29 June 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11785, pp. 233–236. [Google Scholar]
- Du, S.; Chang, J.; Wu, C.; Zhong, Y.; Hu, Y.; Zhao, X.; Su, Z. Optical design and fabrication of a three-channel common-aperture multispectral polarization camera. J. Mod. Opt. 2021, 68, 1121–1133. [Google Scholar] [CrossRef]
- Shrestha, R.; Hardeberg, J.Y.; Khan, R. Spatial arrangement of color filter array for multispectral image acquisition. In Proceedings of the Sensors, Cameras, and Systems for Industrial, Scientific, and Consumer Applications XII, San Francisco, CA, USA, 23–27 February 2011; SPIE: Bellingham, WA, USA, 2011; Volume 7875, pp. 20–28. [Google Scholar]
- Zhang, W.; Suo, J.; Dong, K.; Li, L.; Yuan, X.; Pei, C.; Dai, Q. Handheld snapshot multi-spectral camera at tens-of-megapixel resolution. Nat. Commun. 2023, 14, 5043. [Google Scholar] [CrossRef]
Parameter | Description | Unit | Typical Value |
---|---|---|---|
Sensor characteristics | Resolution | pixels | 1600 (H) × 1200 (V) |
Image size | mm | 7.2 (H) × 5.4 (V) | |
Pixel size | 2 | 4.5 × 4.5 | |
Aspect ratio | - | 4/3 | |
Max. frame rate | fps | 50 | |
Pixel rate | Mpixels/s | 114 –>120 | |
Bit depth | bits | 10 | |
Timing modes |
|
Parameter | VIS | NIR |
---|---|---|
Min Delta E 2000 | 0.0047 | 0.0051 |
Max Delta E 2000 | 0.3500 | 2.2575 |
Mean Delta E 2000 | 0.0562 | 0.0937 |
Median E 2000 | 0.0465 | 0.0658 |
STD Delta E 2000 | 0.0402 | 0.1320 |
Min RMS | 0.0020 | 0.0021 |
Max RMS | 0.0740 | 0.0986 |
Mean RMS | 0.0123 | 0.0108 |
GFC > 0.99 | 99% | 98% |
GFC > 0.95 | 100% | 100% |
Band | Specification * | Measure ** | STD | ||||
---|---|---|---|---|---|---|---|
Centering (nm) | Centering (nm) | FWHM (nm) | Tmax (%) | Centering (nm) | FWHM (nm) | Tmax (%) | |
P1 | 421 | 425 | 71 | 41 | 4 | 36 | 1 |
P2 | 457 | 460 | 52 | 48 | 3 | 17 | 8 |
P3 | 493 | 500 | 44 | 53 | 7 | 9 | 13 |
P4 | 529 | 510 | 39 | 57 | −19 | 4 | 17 |
P5 | 565 | 560 | 36 | 62 | −5 | 1 | 22 |
P6 | 601 | 590 | 34 | 62 | −11 | −1 | 22 |
P7 | 637 | 630 | 33 | 63 | −7 | −2 | 23 |
P8 | 673 | 660 | 33 | 63 | −13 | −3 | 23 |
Average | 43 | 56 | −8 | 16 |
Band | Specification * | Measure ** | STD | ||||
---|---|---|---|---|---|---|---|
Centering (nm) | Centering (nm) | FWHM (nm) | Tmax (%) | Centering (nm) | FWHM (nm) | Tmax (%) | |
P1 | 688 | 670 | 31 | 55 | −18 | 1 | 15 |
P2 | 718 | 705 | 30 | 53 | −13 | 0 | 13 |
P3 | 748 | 735 | 30 | 53 | −13 | −1 | 13 |
P4 | 778 | 760 | 29 | 52 | −18 | −2 | 12 |
P5 | 808 | 810 | 30 | 51 | 2 | −1 | 11 |
P6 | 838 | 840 | 28 | 49 | 2 | −3 | 9 |
P7 | 868 | 860 | 27 | 49 | −8 | −4 | 9 |
P8 | 898 | 885 | 27 | 47 | −13 | −4 | 7 |
Average | 29 | 51 | 1 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, V.; Gouton, P.; Rossé, M.; Katakpe, K.K. Design and Development of Large-Band Dual-MSFA Sensor Camera for Precision Agriculture. Sensors 2024, 24, 64. https://doi.org/10.3390/s24010064
Mohammadi V, Gouton P, Rossé M, Katakpe KK. Design and Development of Large-Band Dual-MSFA Sensor Camera for Precision Agriculture. Sensors. 2024; 24(1):64. https://doi.org/10.3390/s24010064
Chicago/Turabian StyleMohammadi, Vahid, Pierre Gouton, Matthieu Rossé, and Kossi Kuma Katakpe. 2024. "Design and Development of Large-Band Dual-MSFA Sensor Camera for Precision Agriculture" Sensors 24, no. 1: 64. https://doi.org/10.3390/s24010064
APA StyleMohammadi, V., Gouton, P., Rossé, M., & Katakpe, K. K. (2024). Design and Development of Large-Band Dual-MSFA Sensor Camera for Precision Agriculture. Sensors, 24(1), 64. https://doi.org/10.3390/s24010064