Basic Performance Evaluation of a Radiation Survey Meter That Uses a Plastic-Scintillation Sensor
Abstract
:1. Introduction
2. Instruments and Methods
2.1. Devices under Test
2.2. Measurement Setup
2.3. Measurement Setup (Using an Absorber)
2.4. Resolving-Time Measurements
3. Results
3.1. Measurements of β-Ray-Emitting Nuclides
3.2. Measurements of β-Ray-Emitting Nuclides Using an Absorber
3.3. Resolving-Time Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, G. UNSCEAR 2013 Report. Volume I: Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. J. Radiol. Prot. 2014, 34, 725. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Effects and Risks of Ionizing Radiation. Report Vol. I. Report to the General Assembly Scientific Annex A: Levels and Effects of Radiation Exposure Due to the Nuclear Accident after the 2011 Great East-Japan Earthquake and Tsunami. 2013. Available online: https://www.unscear.org/docs/publications/2013/UNSCEAR_2013_Annex_A_JAPANESE.pdf (accessed on 20 February 2024).
- Monzen, S.; Hosoda, M.; Tokonami, S.; Osanai, M.; Yoshino, H.; Hosokawa, Y.; Yoshida, M.A.; Yamada, M.; Asari, Y.; Satoh, K.; et al. Individual Radiation Exposure Dose Due to Support Activities at Safe Shelters in Fukushima Prefecture. PLoS ONE 2011, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Nishimura, Y.; Sato, Y.; Endo, A.; Sakamoto, M.; Hoshi, C.; Zuguchi, M. Examination of the long-term stability of radiation survey meters and electronic pocket dosemeters. Radiat. Prot. Dosim. 2008, 129, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Kondo, H.; Shimada, J.; Tase, C.; Tominaga, T.; Tatsuzaki, H.; Akashi, M.; Tanigawa, K.; Iwasaki, Y.; Ono, T.; Ichihara, M.; et al. Screening of Residents Following the Tokyo Electric Fukushima Daiichi Nuclear Power Plant Accident. Health Phys. 2013, 105, 11–20. [Google Scholar] [CrossRef]
- Fujibuchi, T.; Toyoda, T.; Terasaki, K. Measurement of basic characteristics of scintillation-type radiation survey meters with multi-pixel photon counter. Appl. Radiat. Isot. 2018, 140, 12–17. [Google Scholar] [CrossRef]
- Ogino, H.; Hattori, T. Operational level for unconditional release of contaminated property from affected areas around Fukuhsima Daiichi nuclear power plant. Radiat. Prot. Dosim. 2013, 157, 446–454. [Google Scholar] [CrossRef]
- Kobayashi, D.; Miyake, M.; Kakamu, T.; Tsuji, M.; Mori, Y.; Fukushima, T.; Hazama, A. Reducing radiation exposure using commonly available objects. Environ. Health Prev. Med. 2013, 18, 261–266. [Google Scholar] [CrossRef]
- Singseeta, W.; Thong-aram, D.; Pencharee, S. Design and construction of portable survey meter. J. Phys. Conf. Ser. 2017, 901, 012056. [Google Scholar] [CrossRef]
- Pandey, S.; Pandey, A.; Deshmukh, M.; Shrivastava, A.K. Role of Geiger Muller Counter in Modern Physics. J. Pure Appl. Ind. Phys. 2017, 7, 192–196. [Google Scholar]
- Tsujimura, N.; Yoshida, T. Beta dose rate measurements with an end-window GM survey meter in environments contaminated by the Fukushima Daiichi nuclear accident. Prog. Nucl. Sci. Technol. 2014, 4, 85–89. [Google Scholar] [CrossRef]
- Pashazadeh, A.M.; Aghajani, M.; Nabipour, I.; Assadi, M. Annual effective dose from environmental gamma radiation in Bushehr city. J. Environ. Health Sci. Eng. 2014, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Wakita, H. Geochemistry as a Tool for Earthquake Prediction. J. Phys. Earth 1977, 25, S175–S183. [Google Scholar] [CrossRef] [PubMed]
- Borbinha, J.; Romanets, Y.; Teles, P.; Corisco, J.; Vaz, P.; Carvalho, D.; Brouwer, Y.; Luís, R.; Pinto, L.; Vale, A.; et al. Performance Analysis of Geiger-Müller and Cadmium Zinc Telluride Sensors Envisaging Airborne Radiological Monitoring in NORM Sites. Sensors 2020, 20, 1538. [Google Scholar] [CrossRef]
- Pommé, S.; Pelczar, K.; Kajan, I. Air humidity and annual oscillations in 90Sr/90Y and 60Co decay rate. Sci. Rep. 2022, 12, 9535. [Google Scholar] [CrossRef] [PubMed]
- Goddard, B.; Hitt, G.W.; Bridi, D.; Isakovic, A.F.; El-Khazali, R.; Abulail, A. Data from multi year and multi radiation detector measurements of different radiation sources with environmental data. Data Brief. 2020, 31, 105828. [Google Scholar] [CrossRef] [PubMed]
- Ceklic, S.; Arandjic, D.; Zivanovic, M.; Ciraj-Bjelac, O.; Lazarevic, D. Performance of radiation survey meter in X- and gamma-radiation fields. Radiat. Prot. Dosim. 2014, 162, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Arkani, M.; Khalafi, A.; Arkani, M. Efficient dead time correction of G-M counters using feed forward artificial neural network. Nukleonika 2013, 58, 317–321. [Google Scholar]
- Kadhim, A.K.; Kadni, T.B. Calibration of ionization chamber survey meter. Iraqi J. Phys. 2016, 14, 198–208. [Google Scholar] [CrossRef]
- TCS-1319H. Available online: https://www.aloka.co.jp/usersupport/catalog/pdf/AR-020_220525.pdf (accessed on 14 February 2024).
- TGS-1146. Available online: https://www.aloka.co.jp/usersupport/catalog/pdf/AR-021_220525.pdf (accessed on 14 February 2024).
- Nam, J.S.; Choi, Y.S.; Hong, S.B.; Seo, B.K.; Moon, J.K.; Choi, J.W. Study on the Characteristics of a Scintillator for Beta-ray Detection using Epoxy Resin. EPJ Web Conf. 2017, 153, 07005. [Google Scholar] [CrossRef]
- Bae, J.W.; Kim, H.R. Plastic scintillator beta-ray scanner for in-situ discrimination of beta ray and gamma ray radioactivity in soil. Nucl. Eng. Technol. 2020, 52, 1259–1265. [Google Scholar] [CrossRef]
- Min, S.; Kin, Y.; Ko, K.H.; Seo, B.; Cheong, J.H.; Roh, C.; Hong, S. Optimization of Plastic Scintillator for Detection of Gamma-Rays: Simulation and Experimental Study. Chemosensors 2021, 9, 239. [Google Scholar] [CrossRef]
- Nguyen, P.; Nakamura, H.; Kitamura, H.; Sato, N.; Takahashi, T.; Maki, D.; Kanayama, M.; Shirakawa, Y.; Takahashi, S. Alpha Particle Response for a Prototype Radiation Survey Meter Based on Poly(ethylene terephthalate) with Un-doping Fluorescent Guest Molecules. Jpn. J. Health Phys. 2016, 51, 60–63. [Google Scholar] [CrossRef]
- Maekawa, T.; Sumita, A.; Makino, S. Thin Beta-ray Detectors using Plastic Scintillator Combined with Wavelength-shifting Fibers for Surface Contamination Monitoring. J. Nucl. Sci. Technol. 1998, 35, 886–894. [Google Scholar] [CrossRef]
- Marais, P.G. Resolving time determination of nucleonic apparatus with the two-source method. S. Afr. J. Agric. Sci. 1965, 8, 969–978. [Google Scholar]
- International Commission on Radiological Protection (ICRP). Radiological Protection in Cardiology; ICRP Publication 120; Elsevier: Amsterdam, The Netherlands, 2013; Volume 42, Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_42_1 (accessed on 13 February 2024).
- Ishii, H.; Chida, K.; Satsurai, K.; Haga, Y.; Kaga, Y.; Abe, M.; Inaba, Y.; Zuguchi, M. Occupational eye dose correlation with neck dose and patient-related quantities in interventional cardiology procedures. Radiol. Phys. Technol. 2021, 15, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Tam, S.-Y.; Fung, Y.-Y.; Lau, S.-Y.; Lam, W.-N.; Wong, E.T.-H. Scatter Radiation Distribution to Radiographers, Nearby Patients and Caretakers during Portable and Pediatric Radiography Examinations. Bioengineering 2023, 10, 779. [Google Scholar] [CrossRef] [PubMed]
- Fujibuchi, T. Radiation protection education using virtual reality for the visualisation of scattered distributions during radiological examinations. J. Radiol. Prot. 2021, 41, S317. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K. Assessment of Radiation Dose in Medical Imaging and Interventional Radiology Procedures for Patient and Staff Safety. Diagnostics 2021, 11, 1116. [Google Scholar] [CrossRef] [PubMed]
- Chida, K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol. Phys. Technol. 2022, 15, 101–115. [Google Scholar] [CrossRef]
- ORAMED: Optimization of Radiation Protection of Medical Staff. EURADOS Report 2012-02, Braunschweig, 2012, April. Available online: https://upcommons.upc.edu/bitstream/handle/2117/17229/EURADOS_Report_201202%5B1%5D.pdf?sequence=1 (accessed on 19 February 2024).
- ICRP. Diagnostic Reference Levels in Medical Imaging; ICRP Publication 135. Ann. ICRP 46(1); Elsevier: Amsterdam, The Netherlands, 2017; Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_46_1 (accessed on 19 February 2024).
- ICRP. Education and Training in Radiological Protection for Diagnostic and Interventional Procedures; ICRP Publication 113. Ann. ICRP 39 (5); Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- ICRP. Occupational Radiological Protection in Interventional Procedures; ICRP Publication 139. Ann. ICRP 47(2); Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- International Commission on Radiological Protection (ICRP). ICRP Statement on Tissue Reactions/Early and Late Effects of Radiation in Normal Tissues and Organs—Threshold Doses for Tissue Reactions in a Radiation Protection Context; ICRP Publication 118; Elsevier: Amsterdam, The Netherlands, 2012; Volume 41, Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_41_1-2 (accessed on 13 February 2024).
- International Commission on Radiological Protection (ICRP). Avoidance of Radiation Injuries from Medical Interventional Procedures; ICRP Publication 85; Pergamon: Oxford, UK, 2000; Volume 30, Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_30_2 (accessed on 13 February 2024).
- Koenig, A.; Maas, J.; Viniol, S.; Etzel, R.; Fiebich, M.; Thomas, R.; Mahnken, A. Scatter radiation reduction with a radiation-absorbing pad in interventional radiology examinations. Eur. J. Radiol. 2020, 132, 109245. [Google Scholar] [CrossRef]
- Endo, M.; Haga, Y.; Sota, M.; Tanaka, A.; Otomo, K.; Murabayashi, Y.; Abe, M.; Kaga, Y.; Inaba, Y.; Suzuki, M.; et al. Evaluation of novel X-ray protective eyewear in reducing the eye dose to interventional radiology physicians. J. Radiat. Res. 2021, 62, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Nakagami, K.; Moritake, T.; Nagamoto, K.; Morota, K.; Matsuzaki, S.; Kuriyama, T.; Kunugita, N. Strategy to Reduce the Collective Equivalent Dose for the Lens of the Physician’s Eye Using Short Radiation Protection Curtains to Prevent Cataracts. Diagnostics 2021, 11, 1415. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Implications for Occupational Radiation Protection of the New Dose Limit for the Lens of the Eye; TECDOC 1731; IAEA: Vienna, Austria, 2013; pp. 1–34. [Google Scholar]
- Inaba, Y.; Nakamura, M.; Zuguchi, M.; Chida, K. Development of novel real-time radiation systems using 4-channel sensors. Sensors 2020, 20, 2741. [Google Scholar] [CrossRef] [PubMed]
- Haga, Y.; Chida, K.; Kaga, Y.; Sota, M.; Zuguchi, M. Occupational eye dose in interventional cardiology procedures. Sci. Rep. 2017, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Kaga, Y.; Haga, Y.; Kataoka, N.; Kumasaka, E.; Meguro, T.; Zuguchi, M. Occupational dose in interventional radiology procedures. Am. J. Roentgenol. 2013, 200, 138–141. [Google Scholar] [CrossRef]
- Chida, K.; Saito, H.; Otani, H.; Kohzuki, M.; Takahashi, S.; Yamada, S.; Shirato, K.; Zuguchi, M. Relationship between fluoroscopic time, dose—Area product, body weight, and maximum radiation skin dose in cardiac interventional procedures. Am. J. Roentgenol. 2006, 186, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, M.; Haga, Y.; Sota, M.; Abe, M.; Kaga, Y.; Inaba, Y.; Suzuki, M.; Meguro, T.; Hosoi, Y.; Chida, K. Evaluation of Lens Doses among Medical Staff Involved in Nuclear Medicine: Current Eye Radiation Exposure among Nuclear-Medicine Staff. Appl. Sci. 2023, 13, 9182. [Google Scholar] [CrossRef]
- Bernier, M.O.; Journy, N.; Villoing, D.; Doody, M.M.; Alexander, B.H.; Linet, M.S.; Kitahara, C.M. Cataract Risk in a Cohort of U.S. Radiologic Technologists Performing Nuclear Medicine Procedures. Radiology 2018, 286, 592–601. [Google Scholar] [CrossRef]
Nuclide | Cl-36 | Sr-90 | Y-90 (Daughter Nuclide of Sr-90) |
---|---|---|---|
Endpoint energy of radiation [MeV] | β − 0.709 (98.1%) β + 0.120 (0.014%) EC (Electron Capture) (1.9%) | β − 0.546 (100%) | β − 2.280 (100%) |
Distance | 1.45 cm | 4.45 cm | 16 cm |
---|---|---|---|
The difference in sensitivity of the plastic scintillation survey meter relative to the GM survey meters | −4.62% | −7.32% | −11.3% |
Whether the difference is within the relative reference error (≤±25%) | Yes. | Yes. | Yes. |
Distance | 1.45 cm | 4.45 cm | 16 cm |
---|---|---|---|
The difference in sensitivity of the plastic scintillation survey meter relative to the GM survey meters | 83.9% | 38.6% | −3.36% |
Whether the difference is within the relative reference error (≤±25%) | No. | No. | Yes. |
Distance | 1.45 cm | 4.45 cm | 16 cm |
---|---|---|---|
The difference in sensitivity of the plastic scintillation survey meter relative to the GM survey meters | 22.2% | 12.2% | −7.26% |
Whether the difference is within the relative reference error (≤±25%) | Yes. | Yes. | Yes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, K.; Shindo, R.; Ohno, S.; Konta, S.; Isobe, R.; Inaba, Y.; Suzuki, M.; Hosoi, Y.; Chida, K. Basic Performance Evaluation of a Radiation Survey Meter That Uses a Plastic-Scintillation Sensor. Sensors 2024, 24, 2973. https://doi.org/10.3390/s24102973
Yamamoto K, Shindo R, Ohno S, Konta S, Isobe R, Inaba Y, Suzuki M, Hosoi Y, Chida K. Basic Performance Evaluation of a Radiation Survey Meter That Uses a Plastic-Scintillation Sensor. Sensors. 2024; 24(10):2973. https://doi.org/10.3390/s24102973
Chicago/Turabian StyleYamamoto, Keisuke, Ryota Shindo, Saya Ohno, Satoe Konta, Rio Isobe, Yohei Inaba, Masatoshi Suzuki, Yoshio Hosoi, and Koichi Chida. 2024. "Basic Performance Evaluation of a Radiation Survey Meter That Uses a Plastic-Scintillation Sensor" Sensors 24, no. 10: 2973. https://doi.org/10.3390/s24102973
APA StyleYamamoto, K., Shindo, R., Ohno, S., Konta, S., Isobe, R., Inaba, Y., Suzuki, M., Hosoi, Y., & Chida, K. (2024). Basic Performance Evaluation of a Radiation Survey Meter That Uses a Plastic-Scintillation Sensor. Sensors, 24(10), 2973. https://doi.org/10.3390/s24102973