CMOS Compatible Hydrogen Sensor Using Platinum Gate and ALD–Aluminum Oxide
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sensing Mechanism; Device Response and Recovery
3.2. The 90% Response Time
3.3. Capacitance Variation (∆C) and Response Time (t90%)
3.4. Impact of Temperature on (∆C) and (t90%)
3.5. Impact of Total Gas Flow on (∆C) and (t90%)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasago, Y.; Nakamura, H.; Anzai, Y.; Moritsuka, T.; Odaka, T.; Usagawa, T. FETtype hydrogen sensor with short response time and high drift immunity. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; pp. T106–T107. [Google Scholar]
- Boon-Brett, L.; Bousek, J.; Black, G.; Moretto, P.; Castello, P.; Hübert, T.; Banach, U. Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. Int. J. Hydrogen Energy 2010, 35, 373–384. [Google Scholar] [CrossRef]
- Korotcenkov, Y.G.; Han, S.D.; Stetter, J.R. Review of Electrochemical Hydrogen Sensors. Chem. Rev. 2009, 109, 1402–1433. [Google Scholar] [CrossRef] [PubMed]
- Hübert, T.; Majewski, J.; Banach, U.; Detjens, M.; Tiebe, C. Response Time Measurement of Hydrogen Sensors. 2017. Available online: https://h2tools.org/sites/default/files/2019-08/paper_205.pdf (accessed on 17 March 2024).
- Fellmuth, B.; Schmidtchen, U.; Palmisano, V.; Ronnefeld, E.W. Sensors for Safety and Process Control in Hydrogen Technologies; Taylor and Francis: New York, NY, USA, 2016; ISBN 9781466596542. [Google Scholar]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Lundström, I.; Shivaraman, S.; Svensson, C.; Lundkvist, L. A hydro-gensensitive MOS fieldeffect transistor. Appl. Phys. Lett. 1975, 26, 55–57. [Google Scholar] [CrossRef]
- Fogelberg, J.; Eriksson, M.; Dannetun, H.; Petersson, L. Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface. J. Appl. Phys. 1995, 78, 988–996. [Google Scholar] [CrossRef]
- Salomonsson, A.; Eriksson, M.; Dannetun, H. Hydrogen interaction with platinum and palladium metal–insulator–semiconductor devices. J. Appl. Phys. 2005, 98, 014505. [Google Scholar] [CrossRef]
- Eriksson, M.; Salomonsson, A.; Lundström, I.; Briand, D.; Åbom, A.E. The influence of the insulator surface properties on the hydrogen response of field-effect gas sensors. J. Appl. Phys. 2005, 98, 034903. [Google Scholar] [CrossRef]
- Klingvall, R.; Lundstrom, I.; Lofdahl, M.; Eriksson, M. A combinatorial approach for field-effect gas sensor research and development. IEEE Sens. J. 2005, 5, 995–1003. [Google Scholar] [CrossRef]
- Löfdahl, M.; Utaiwasin, C.; Carlsson, A.; Lundström, I.; Eriksson, M. Gas response dependence on gate metal morphology of field-effect devices. Sens. Actuators B Chem. 2001, 80, 183–192. [Google Scholar] [CrossRef]
- Löfdahl, M.; Eriksson, M.; Johansson, M.; Lundström, I. Difference in hydrogen sensitivity between Pt and Pd field-effect devices. J. Appl. Phys. 2002, 91, 4275–4280. [Google Scholar] [CrossRef]
- Choi, S.-Y.; Takahashi, K.; Matsuo, T. No blister formation Pd/Pt double metal gate MISFET hydrogen sensors. IEEE Electron Device Lett. 1984, 5, 14–15. [Google Scholar] [CrossRef]
- Xiao, H. Metallization; PM220; SPIE: St Bellingham, WA, USA, 2012; pp. 451–507. [Google Scholar]
- Usagawa, T.; Kikuchi, Y. A Pt–Ti–O gate Si-metal-insulator- semiconductor field-effect transistor hydrogen gas sensor. J. Appl. Phys. 2010, 108, 074909. [Google Scholar] [CrossRef]
- Usagawa, T.; Kikuchi, Y. Device characteristics for Pt–Ti–O gate Si–MISFETs hydrogen gas sensors. Sens. Actuators B Chem. 2011, 160, 105–114. [Google Scholar] [CrossRef]
- Usagawa, T.; Takeyasu, K.; Fukutani, K. Hydrogen-induced Dipoles and Sensing Principles of Pt-Ti-O Gate Si-MISFET Hydrogen Gas Sensors. Procedia Eng. 2014, 87, 1015–1018. [Google Scholar] [CrossRef]
- Yadav, L.; Yadava, P.K.; Dwivedi, R.; Srivastava, S.K. Hydrogen Gas Micro Sensor Based on SiO2 and TiO2 Systems. IETE J. Res. 1990, 36, 195–197. [Google Scholar] [CrossRef]
- Ratan, S.; Kumar, C.; Kumar, A.; Jarwal, D.K.; Mishra, A.K.; Upadhyay, R.K.; Singh, A.P.; Jit, S. Room temperature high hydrogen gas response in Pd/TiO2/Si/Al capacitive sensor. Micro Nano Lett. 2020, 15, 632–635. [Google Scholar] [CrossRef]
- Armgarth, M.; Söderberg, D.; Lundström, I. Palladium and platinum gate metal-oxide-semiconductor capacitors in hydrogen and oxygen mixtures. Appl. Phys. Lett. 1982, 41, 654–655. [Google Scholar] [CrossRef]
- Panigrahi, J.; Vandana; Singh, R.; Singh, P.K. Enhanced field effect passivation of c-Si surface via introduction of trap centers: Case of hafnium and aluminium oxide bilayer films deposited by thermal ALD. Sol. Energy Mater. Sol. Cells 2018, 188, 219–227. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Huang, C.-W.; Cho, Y.-S.; Wu, W.-Y.; Wuu, D.-S.; Zhang, X.-Y.; Zhu, W.-Z.; Lien, S.-Y.; Ye, C.-S. Efficiency improvement of PERC solar cell using an aluminum oxide passivation layer prepared via spatial atomic layer deposition and post-annealing. Surf. Coat. Technol. 2019, 358, 968–975. [Google Scholar] [CrossRef]
- Klingvall, R.; Lundström, I.; Eriksson, M. Robust gas detection at sub ppm concentrations. Sens. Actuators B Chem. 2011, 160, 571–579. [Google Scholar] [CrossRef]
- Helmich, L.; Walter, D.C.; Bredemeier, D.; Schmidt, J. Atomic-Layer-Deposited Al2O3 as Effective Barrier against the Diffusion of Hydrogen from SiNx:H Layers into Crystalline Silicon during Rapid Thermal Annealing. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2020, 14, 2000367. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Zhang, R.-J.; Lu, H.-L.; Chen, X.; Sun, Y.; Zhang, Y.; Wei, Y.-F.; Xu, J.-P.; Wang, S.-Y.; Zheng, Y.-X.; et al. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition. Nanoscale Res. Lett. 2015, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- SEC-Z500X Series. Available online: https://www.horiba.com/int/semiconductor/products/detail/action/show/Product/sec-z500x-series-729/ (accessed on 11 April 2024).
- Hübert, T.; Boon-Brett, L.; Palmisano, V. Trends in Gas Sensor Development for Hydrogen Safety; European Union: Brussels, Belgium, 2013. [Google Scholar]
- Spetz, A.; Armgarth, M.; Lundström, I. Hydrogen and ammonia response of metal-silicon dioxide-silicon structures with thin platinum gates. J. Appl. Phys. 1988, 64, 1274–1283. [Google Scholar] [CrossRef]
- Čermák, J.; Kufudakis, A.; Gardavská, G. Diffusivity of Hydrogen in Platinum and the Diffusionelastic Phenomenon. J. Less Common Met. 1979, 63, P1–P8. [Google Scholar] [CrossRef]
- Dwivedi, D.; Dwivedi, R.; Srivastava, S.K. Sensing properties of palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasma grown silicon dioxide. Sens. Actuators B Chem. 2000, 71, 161–168. [Google Scholar] [CrossRef]
- Scharnagl, K.; Karthigeyan, A.; Burgmair, M.; Zimmer, M.; Doll, T.; Eisele, I. Low temperature hydrogen detection at high concentrations: Comparison of platinum and iridium. Sens. Actuators B Chem. 2001, 80, 163–168. [Google Scholar] [CrossRef]
- Flandre, D. Silicon-on-insulator technology for high temperature metal oxide semiconductor devices and circuits. Mater. Sci. Eng. B 1995, 29, 7–12. [Google Scholar] [CrossRef]
- Cavalcante, C.; Fenouillet-Beranger, C.; Batude, P.; Garros, X.; Federspiel, X.; Lacord, J.; Kerdiles, S.; Royet, A.S.; Acosta-Alba, P.; Rozeau, O.; et al. 28nm FDSOI CMOS Technology (FEOL and BEOL) Thermal Stability for 3D Sequential Integration: Yield and Reliability Analysis. In Proceedings of the 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2. [Google Scholar]
- Almaev, A.V.; Nikolaev, V.; Yakovlev, N.; Butenko, P.; Stepanov, S.; Pechnikov, A.; Scheglov, M.; Chernikov, E. Hydrogen sensors based on Pt/α-Ga2O3:Sn/Pt structures. Sens. Actuators B Chem. 2022, 364, 131904. [Google Scholar] [CrossRef]
- Allen, P.E.; Holberg, D.R. CMOS Analog Circuit Design; 3rd Edition, New to this Edition; The Oxford Series in Electrical and Computer Engineering; Oxford University Press: Oxford, NY, USA, 2011. [Google Scholar]
- Palmisano, V.; Boon-Brett, L.; Bonato, C.; Harskamp, F.; Buttner, W.; Post, M.; Burgess, R.; Rivkin, C. Evaluation of selectivity of commercial hydrogen sensors. Int. J. Hydrogen Energy 2014, 39, 20491–20496. [Google Scholar] [CrossRef]
- Lange’s Handbook of Chemistry, 16th ed.; McGraw-Hill Education: New York, NY, USA, 2005; Available online: https://www.accessengineeringlibrary.com/content/book/9780071432207 (accessed on 29 April 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshaer, A.; Ecoffey, S.; Jaouad, A.; Monfray, S.; Drouin, D. CMOS Compatible Hydrogen Sensor Using Platinum Gate and ALD–Aluminum Oxide. Sensors 2024, 24, 3020. https://doi.org/10.3390/s24103020
Elshaer A, Ecoffey S, Jaouad A, Monfray S, Drouin D. CMOS Compatible Hydrogen Sensor Using Platinum Gate and ALD–Aluminum Oxide. Sensors. 2024; 24(10):3020. https://doi.org/10.3390/s24103020
Chicago/Turabian StyleElshaer, Adham, Serge Ecoffey, Abdelatif Jaouad, Stephane Monfray, and Dominique Drouin. 2024. "CMOS Compatible Hydrogen Sensor Using Platinum Gate and ALD–Aluminum Oxide" Sensors 24, no. 10: 3020. https://doi.org/10.3390/s24103020
APA StyleElshaer, A., Ecoffey, S., Jaouad, A., Monfray, S., & Drouin, D. (2024). CMOS Compatible Hydrogen Sensor Using Platinum Gate and ALD–Aluminum Oxide. Sensors, 24(10), 3020. https://doi.org/10.3390/s24103020