Environmental Surveillance through Machine Learning-Empowered Utilization of Optical Networks
Abstract
:1. Introduction
2. Waveplate Model
3. Machine Learning Model Training and Validation
4. Smart Sensing Grid Approach: Seismic Network Implementation
4.1. Case Scenario
4.2. ML Model Testing Results
5. Triangulation Method for Localization Purposes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAFOD | San Andreas Fault Observatory at Depth |
GPS | Global Positioning System |
IASPEI | International Association of Seismology and Physics of the Earth’s Interior |
P waves | Primary Waves |
S waves | Secondary Waves |
ML | Machine Learning |
OTDR | Optical Time-Domain Reflectometer |
OFDR | Optical Frequency-Domain Reflectometry |
DAS | Distributed Acoustic Sensing |
SOP | State of Polarization |
Abbreviations
SOPAS | State-of-Polarization Angular Speed |
INGV | National Institute of Geophysics and Volcanology |
CIA | Central Italian Apennines |
ONC | Optical Network Controller |
API | Application Programming Interface |
NE | Network Element |
ROADM | Reconfigurable Optical Add-Drop Multiplexer |
TRX | Transceiver |
OSC | Optical Supervisory Channel |
IM-DD | Intensity Modulated Direct Detected |
PBS | Polarization Beam Splitter |
LSTM | Long Short-Term Memory |
UTC | Coordinated Universal Time |
Appendix A. Waveplate Model Theory
Appendix B. State-of-Polarization Angular Speed (SOPAS) Theorem
References
- He, M.; Ren, S.; Tao, Z. Cross-fault Newton force measurement for Earthquake prediction. Rock Mech. Bull. 2022, 1, 100006. [Google Scholar] [CrossRef]
- Lin, W.; Conin, M.; Moore, J.; Chester, F.; Nakamura, Y.; Mori, J.; Anderson, L.; Brodsky, E. Stress State in the Largest Displacement Area of the 2011 Tohoku-Oki Earthquake. Science 2013, 339, 687–690. [Google Scholar] [CrossRef]
- Hickman, S.; Zoback, M. Stress orientations and Magnitudes in the SAFOD Pilot Hole. Adv. Earth Space Sci. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Ishii, H.; Asai, Y. Development of a Borehole Stress Meter for Studying Earthquake Predictions and Rock Mechanics, and Stress Seismograms of the 2011 Tohoku Earthquake (M 9.0). Earth Planets Space 2015, 67, 26. [Google Scholar] [CrossRef]
- Gladwin, M. High-Precision Multicomponent Borehole Deformation Monitoring. Am. Inst. Phys. 1984, 55, 2011–2016. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, C.; Fan, T. Stress State of the Baoxing Segment of the Southwestern Longmenshan Fault Zone before and after the Ms 7.0 Lushan Earthquake. Asian Earth Sci. 2016, 121, 9–19. [Google Scholar] [CrossRef]
- Xie, J.; Xie, Z. Infrasound waves caused by earthquake on 12 July 1993 in Japan. Acta Acust. 1996, 12, 55–61. [Google Scholar]
- Allen, R.; Kanamori, H. The Potential for Earthquake Early Warning in Southern California. Science 2003, 300, 786–789. [Google Scholar] [CrossRef] [PubMed]
- Geller, R.; Jackson, D.; Kagan, Y.; Mulargia, F. Earthquakes Cannot Be Predicted. Science 1997, 275, 1616. [Google Scholar] [CrossRef]
- Jordan, T.; Chen, Y.; Gasparini, P.; Madariaga, R.; Main, I.G.; Marzocchi, W.; Papadopoulos, G.A.; Sobolev, G.A.; Yamaoka, K.; Zschau, J. Operational Earthquake Forecasting: State of Knowledge and Guidelines for Utilization. Ann. Geophys. 2011, 54, 316–391. [Google Scholar]
- Mecozzi, A.; Antonelli, C.; Mazur, M.; Fontaine, N.; Chen, H.; Dallachiesa, L.; Ryf, R. Use of Optical Coherent Detection for Environmental Sensing. J. Light. Technol. 2023, 41, 3350–3357. [Google Scholar] [CrossRef]
- Mazur, M.; Parkin, N.; Ryf, R.; Iqbal, A.; Wright, P.; Farrow, K.; Fontaine, N.; Börjeson, E.; Kim, K.; Dallachiesa, L.; et al. Continuous Fiber Sensing over Field-Deployed Metro Link using Real-Time Coherent Transceiver and DAS. In Proceedings of the European Conference on Optical Communication (ECOC), Basel, Switzerland, 18 September 2022. [Google Scholar]
- Kulhánek, O. Seismic Waves. In Anatomy of Seismograms, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1990; Volume 18, pp. 13–45. [Google Scholar]
- Fernández-Ruiz, M.; Soto, M.; Williams, E.; Martin-Lopez, S.; Zhan, Z.; Gonzalez-Herraez, M.; Martins, H. Distributed Acoustic Sensing for Seismic Activity Monitoring. APL Photonics 2020, 5, 030901. [Google Scholar] [CrossRef]
- Boffi, P. Sensing Applications in Deployed Telecommunication Fiber Infrastructures. In Proceedings of the European Conference on Optical Communication (ECOC), Basel, Switzerland, 18 September 2022. [Google Scholar]
- Eiselt, M.; Azendorf, F.; Sandmann, A. Optical Fiber for Remote Sensing with High Spatial Resolution. In Proceedings of the EASS 2022, 11th GMM-Symposium, Erfurt, Germany, 5 July 2022. [Google Scholar]
- Fichtner, A.; Bogris, A.; Nikas, T.; Bowden, D.; Lentas, K.; Melis, N.S.; Simos, C.; Simos, I.; Smolinski, K. Theory of Phase Transmission Fibre-Optic Deformation Sensing. Geophys. J. Int. 2022, 231, 1031–1039. [Google Scholar] [CrossRef]
- Guerrier, S. High Bandwidth Detection of Mechanical Stress in Optical Fibre Using Coherent Detection of Rayleigh Scattering. Ph.D. Thesis, Institut Polytechnique de Paris, Paris, France, 3 February 2022. [Google Scholar]
- Dong, B.; Popescu, A.; Tribaldos, V.; Byna, S.; Ajo-Franklin, J.; Wu, K. Real-Time and Post-Hoc Compression for Data from Distributed Acoustic Sensing. Comput. Geosci. 2022, 166, 105181. [Google Scholar] [CrossRef]
- Lellouch, A.; Yuan, S.; Ellsworth, W.; Biondi, B. Velocity-based Earthquake Detection using Downhole Distributed Acoustic Sensing—Examples from the San Andreas Fault Observatory at Depthvelocity-based Earthquake Detection using Downhole Distributed Acoustic Sensing. Bull. Seismol. Soc. Am. 2019, 109, 2491–2500. [Google Scholar] [CrossRef]
- Marra, G.; Clivati, C.; Luckett, R.; Tampellini, A.; Kronjäger, J.; Wright, L.; Mura, A.; Levi, F.; Robinson, S.; Xuereb, A.; et al. Ultrastable Laser Interferometry for Earthquake Detection with Terrestrial and Submarine Cables. Science 2018, 361, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Cantono, M.; Castellanos, J.; Batthacharya, S.; Yin, S.; Zhan, Z.; Mecozzi, A.; Kamalov, V. Optical Network Sensing: Opportunities and Challenges. In Proceedings of the Optical Fiber Communication Conference (OFC) 2022, San Diego, CA, USA, 6 March 2022. [Google Scholar]
- Barcik, P.; Munster, P. Measurement of Slow and Fast Polarization Transients on a Fiber-Optic Testbed. Optica 2020, 10, 15250–15257. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; Cantono, M.; Kamalov, V.; Mecozzi, A.; Müller, R.; Yin, S.; Castellanos, J. Optical Polarization–Based Seismic and Water Wave Sensing on Transoceanic Cables. Science 2021, 371, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Curti, F.; Daino, B.; De Marchis, G.; Matera, F. Statistical Treatment of the Evolution of the Principal States of Polarization in Single-Mode Fibers. J. Light. Technol. 1990, 8, 1162–1166. [Google Scholar] [CrossRef]
- Pellegrini, S.; Rizzelli, G.; Barla, M.; Gaudino, R. Algorithm Optimization for Rockfalls Alarm System Based on Fiber Polarization Sensing. IEEE Photonics J. 2023, 15, 7100709. [Google Scholar] [CrossRef]
- Feigl, K. Overview and Preliminary Results from the PoroTomo Project at Brady Hot Springs, Nevada: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology. In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering 2017, Stanford, CA, USA, 13 February 2022. [Google Scholar]
- Italian National Institute of Geophysics and Volcanology (INGV). Available online: http://ismd.mi.ingv.it/ismd.php?tipo=lista (accessed on 20 April 2024).
- Li, H.; Qiu, T. Continuous Manufacturing Process Sequential Prediction using Temporal Convolutional Network. Comput. Aided Chem. Eng. 2022, 49, 1789–1794. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Seismic Waves. In Long Short-Term Memory; Neural Computation; MIT Press: Cambridge, MA, USA, 1997; Volume 9, pp. 1735–1780. [Google Scholar]
- Bratovich, R.; Martinez, F.; Straullu, S.; Virgillito, E.; Castoldi, A.; D’Amico, A.; Aquilino, F.; Pastorelli, R.; Curri, V. Surveillance of Metropolitan Anthropic Activities by WDM 10G Optical Data Channels. In Proceedings of the European Conference on Optical Communication (ECOC) 2022, Basel, Switzerland, 18 September 2022. [Google Scholar]
- Virgillito, E.; Straullu, S.; Aquilino, F.; Bratovich, R.; Awad, H.; Proietti, R.; D’Amico, A.; Pastorelli, R.; Curri, V. Detection, Localization and Emulation of Environmental Activities Using SOP Monitoring of IMDD Optical Data Channels. In Proceedings of the 23rd International Conference on Transparent Optical Networks (ICTON) 2023, Bucharest, Romania, 2 July 2023. [Google Scholar]
- Straullu, S.; Aquilino, F.; Bratovich, R.; Rodriguez, F.; D’Amico, A.; Virgillito, E.; Pastorelli, R.; Curri, V. Real-time Detection of Anthropic Events by 10G Channels in Metro Network Segments. In Proceedings of the IEEE Photonics Conference (IPC) 2022, Vancouver, BC, Canada, 13 November 2022. [Google Scholar]
- Herrman, R.; Malagnini, L.; Munafò, I. Regional Moment Tensors of the 2009 L’Aquila Earthquake Sequence. Bull. Seismol. Soc. Am. 2009, 101, 975–993. [Google Scholar] [CrossRef]
Epicenter Location | Station to Epicenter Distance (km) | ||||
---|---|---|---|---|---|
Longitude | Latitude | MNTV | ZCCA | T0821 | |
INGV Recording | 11.251 | 44.868 | 47.88 | 61.45 | 23.14 |
Triangulation Simulator | 11.2846 | 44.8705 | 49.59 | 63.08 | 20.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, H.; Usmani, F.; Virgillito, E.; Bratovich, R.; Proietti, R.; Straullu, S.; Aquilino, F.; Pastorelli, R.; Curri, V. Environmental Surveillance through Machine Learning-Empowered Utilization of Optical Networks. Sensors 2024, 24, 3041. https://doi.org/10.3390/s24103041
Awad H, Usmani F, Virgillito E, Bratovich R, Proietti R, Straullu S, Aquilino F, Pastorelli R, Curri V. Environmental Surveillance through Machine Learning-Empowered Utilization of Optical Networks. Sensors. 2024; 24(10):3041. https://doi.org/10.3390/s24103041
Chicago/Turabian StyleAwad, Hasan, Fehmida Usmani, Emanuele Virgillito, Rudi Bratovich, Roberto Proietti, Stefano Straullu, Francesco Aquilino, Rosanna Pastorelli, and Vittorio Curri. 2024. "Environmental Surveillance through Machine Learning-Empowered Utilization of Optical Networks" Sensors 24, no. 10: 3041. https://doi.org/10.3390/s24103041
APA StyleAwad, H., Usmani, F., Virgillito, E., Bratovich, R., Proietti, R., Straullu, S., Aquilino, F., Pastorelli, R., & Curri, V. (2024). Environmental Surveillance through Machine Learning-Empowered Utilization of Optical Networks. Sensors, 24(10), 3041. https://doi.org/10.3390/s24103041