Early Identification of Rotten Potatoes Using an Electronic Nose Based on Feature Discretization and Ensemble Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. The Electronic Nose Detection System
2.3. The Detection Procedure of the E-Nose
2.4. Data Preprocessing
2.5. Electronic Nose Data Analysis Methods
2.5.1. Ensemble Convolutional Neural Network
2.5.2. Feature Discretization Method
3. Results
3.1. The Response Curves Obtained by the E-Nose
3.2. Visual Analysis of Data in Laboratory and Storage Environments
3.3. Classification Result Analysis Based on the Feature Discretization Method
4. Discussion
4.1. Effectiveness of the Feature Discretization Method
4.2. Effectiveness of the Ensemble Convolutional Neural Network
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Xu, F.; Wu, Y.; Hu, H.-H.; Dai, X.-F. Progress of potato staple food research and industry development in China. J. Integr. Agric. 2017, 16, 2924–2932. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Huang, M.; Zhu, Q.; Zhao, X. Automatic detection of multi-type defects on potatoes using multispectral imaging combined with a deep learning model. J. Food Eng. 2023, 336, 111213. [Google Scholar] [CrossRef]
- Tadesse, B.; Bakala, F.; Mariam, L.W. Assessment of postharvest loss along potato value chain: The case of Sheka Zone, southwest Ethiopia. Agric. Food Secur. 2018, 7, 18. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, M.; Liang, S. Effect of overcooking on flavor compounds of potato. Food Sci. 2017, 38, 200–204. [Google Scholar]
- Zhang, F.; Zhang, Y.; Su, X.; Xu, W.; An, H.; Ma, Q.; Sun, J.; Wang, J.; Wang, W. Analysis of Volatile Components in Potatoes with Dry Rot by Headspace-Gas Chromatography-Ion Mobility Spectrometry. Food Sci. 2022, 43, 317–323. [Google Scholar]
- Kühn, J.; Considine, T.; Singh, H. Interactions of milk proteins and volatile flavor compounds: Implications in the development of protein foods. J. Food Sci. 2006, 71, R72–R82. [Google Scholar] [CrossRef]
- Cremer, D.R.; Eichner, K. The reaction kinetics for the formation of Strecker aldehydes in low moisture model systems and in plant powders. Food Chem. 2000, 71, 37–43. [Google Scholar] [CrossRef]
- Morris, W.L.; Shepherd, T.; Verrall, S.R.; McNicol, J.W.; Taylor, M.A. Relationships between volatile and non-volatile metabolites and attributes of processed potato flavour. Phytochemistry 2010, 71, 1765–1773. [Google Scholar] [CrossRef]
- Bough, R.A.; Holm, D.G.; Jayanty, S.S. Evaluation of cooked flavor for fifteen potato genotypes and the correlation of sensory analysis to instrumental methods. Am. J. Potato Res. 2020, 97, 63–77. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, S.; Hu, Y.; Yang, H.; Guo, T.; Yi, X. Evaluation Method of Potato Storage External Defects Based on Improved U-Net. Agronomy 2023, 13, 2503. [Google Scholar] [CrossRef]
- Arshaghi, A.; Ashourian, M.; Ghabeli, L. Potato diseases detection and classification using deep learning methods. Multimedia Tools Appl. 2023, 82, 5725–5742. [Google Scholar] [CrossRef]
- Al-Adhaileh, M.H.; Verma, A.; Aldhyani, T.H.H.; Koundal, D. Potato Blight Detection Using Fine-Tuned CNN Architecture. Mathematics 2023, 11, 1516. [Google Scholar] [CrossRef]
- Matveyeva, T.A.; Sarimov, R.M.; Simakin, A.V.; Astashev, M.E.; Burmistrov, D.E.; Lednev, V.N.; Sdvizhenskii, P.A.; Grishin, M.Y.; Pershin, S.M.; Chilingaryan, N.O.; et al. Using Fluorescence Spectroscopy to Detect Rot in Fruit and Vegetable Crops. Appl. Sci. 2022, 12, 3391. [Google Scholar] [CrossRef]
- Liang, P.-S.; Haff, R.P.; Hua, S.-S.T.; Munyaneza, J.E.; Mustafa, T.; Sarreal, S.B.L. Nondestructive detection of zebra chip disease in potatoes using near-infrared spectroscopy. Biosyst. Eng. 2018, 166, 161–169. [Google Scholar] [CrossRef]
- Wu, J.; Pang, L.; Zhang, X.; Lu, X.; Yin, L.; Lu, G.; Cheng, J. Early Discrimination and Prediction of C. fimbriata-Infected Sweet potatoes during the Asymptomatic Period Using Electronic Nose. Foods 2022, 11, 1919. [Google Scholar] [CrossRef]
- Akbari-Adergani, B.; Mahmood-Babooi, K.; Salehi, A.; Khaniki, G.J.; Shariatifar, N.; Sadighara, P.; Zeinali, T. GC–MS determination of the content of polycyclic aromatic hydrocarbons in bread and potato Tahdig prepared with the common edible oil. Environ. Monit. Assess. 2021, 193, 540. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Duan, W.; Zhao, Y.; Liu, X.; Wen, G.; Zeng, F.; Liu, G. Development of a Flavor Fingerprint Using HS-GC-IMS for Volatile Compounds from Steamed Potatoes of Different Varieties. Foods 2023, 12, 2252. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-R.; Ou, X.-L.; Ma, Y.-L.; Zhu, B. Analysis of volatile components in mosquito-repellent sticks by headspace-gas chromatography/mass spectrometry. Chin. J. Anal. Lab. 2011, 30, 98–102. [Google Scholar]
- Lu, L.; Hu, Z.; Hu, X.; Li, D.; Tian, S. Electronic tongue and electronic nose for food quality and safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Lv, Z.; Zeng, Q.; Fu, X.; Chen, Q.; Luo, Z.; Luo, C.; Wang, D.; Zhang, W. Analysis of the volatile profiles of kiwifruits experiencing soft rot using E-nose and HS-SPME/GC–MS. LWT 2023, 173, 114405. [Google Scholar] [CrossRef]
- Wang, Y.; Fei, C.; Wang, D.; Wei, Y.; Qing, Z.; Zhao, S.; Wu, H.; Zhang, W. Quantitative analysis and early detection of postharvest soft rot in kiwifruit using E-nose and chemometrics. J. Food Meas. Charact. 2023, 17, 4462–4472. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, K.; Zhao, N.; Yang, J.; Zhang, Y.; Ma, C.; Pan, L.; Tu, K. Information fusion of hyperspectral imaging and electronic nose for evaluation of fungal contamination in strawberries during decay. Postharvest Biol. Technol. 2019, 153, 152–160. [Google Scholar] [CrossRef]
- Wijaya, D.R.; Sarno, R.; Zulaika, E. Noise filtering framework for electronic nose signals: An application for beef quality monitoring. Comput. Electron. Agric. 2019, 157, 305–321. [Google Scholar] [CrossRef]
- Chang, Z.; Lv, J.; Qi, H.; Ma, Y.; Chen, D.; Xie, J.; Sun, Y. Bacterial Infection Potato Tuber Soft Rot Disease Detection Based on Electronic Nose. Open Life Sci. 2017, 12, 379–385. [Google Scholar] [CrossRef]
- Biondi, E.; Blasioli, S.; Galeone, A.; Spinelli, F.; Cellini, A.; Lucchese, C.; Braschi, I. Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale. Talanta 2014, 129, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Rutolo, M.F.; Iliescu, D.; Clarkson, J.P.; Covington, J.A. Early identification of potato storage disease using an array of metal-oxide based gas sensors. Postharvest Biol. Technol. 2016, 116, 50–58. [Google Scholar] [CrossRef]
- Rutolo, M.F.; Clarkson, J.P.; Harper, G.; Covington, J.A. The use of gas phase detection and monitoring of potato soft rot infection in store. Postharvest Biol. Technol. 2018, 145, 15–19. [Google Scholar] [CrossRef]
- Ghosh, A.; Ghosh, T.K.; Das, S.; Ray, H.; Mohapatra, D.; Modhera, B.; Ghosh, D.; Parua, S.; Pal, S.; Tiwari, S.; et al. Development of electronic nose for early spoilage detection of potato and onion during post-harvest storage. J. Mater. NanoScience 2022, 9, 101–114. [Google Scholar]
- Zhang, X.; Ma, X.; Fan, X.; Ge, T.; Leiby, R.E.; Swingle, B.M.; Johnson, S.B.; Larkin, R.; Chim, B.K.; Hao, J. First Report of Pectobacterium brasiliense Causing Bacterial Blackleg and Soft Rot of Potato in Pennsylvania. Plant Dis. 2023, 107, 2512. [Google Scholar] [CrossRef] [PubMed]
- Osei, R.; Yang, C.D.; Cui, L.X.; Ma, T.; Li, Z.; Boamah, S. Isolation, identification, and pathogenicity of Lelliottia amnigena causing soft rot of potato tuber in China. Microb. Pathog. 2022, 164, 105441. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, Y.; Han, Y.; Zhai, Y. Researching Progress and Developing Trend of Gas Sensors. Comput. Meas. Control 2003, 11, 731–734. [Google Scholar]
- Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B Chem. 2005, 108, 2–14. [Google Scholar] [CrossRef]
- Pashami, S.; Lilienthal, A.J.; Trincavelli, M. Detecting Changes of a Distant Gas Source with an Array of MOX Gas Sensors. Sensors 2012, 12, 16404–16419. [Google Scholar] [CrossRef]
- Qian, K.; Bao, Y.; Zhu, J.; Wang, J.; Wei, Z. Development of a portable electronic nose based on a hybrid filter-wrapper method for identifying the Chinese dry-cured ham of different grades. J. Food Eng. 2020, 290, 110250. [Google Scholar] [CrossRef]
- Xu, M.; Wang, J.; Gu, S. Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy. J. Food Eng. 2019, 241, 10–17. [Google Scholar] [CrossRef]
- Gu, S.; Wang, Z.H.; Chen, W.; Wang, J. Early identification of Aspergillus spp. contamination in milled rice by E-nose combined with chemometrics. J. Sci. Food Agric. 2021, 101, 4220–4228. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Li, H.Y.; Li, L.; Su, H.-Y.; Tang, J.; Bai, X.; Liu, H. Smart Electronic Nose Enabled by an All-Feature Olfactory Algorithm. Adv. Intell. Syst. 2022, 4, 2270032. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A. An electronic nose based on carbon nanotube -titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sensors Actuators B Chem. 2022, 357, 131418. [Google Scholar] [CrossRef]
- He, X.; Niyogi, P. Locality Preserving Projections (LPP). Adv. Neural Inf. Process. Syst. 2002, 16, 611–638. [Google Scholar]
- Yang, Y.; Webb, G.I.; Wu, X. Discretization methods. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2009; pp. 101–116. [Google Scholar]
- Garcia, S.; Luengo, J.; Sáez, J.A.; López, V.; Herrera, F. A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 2013, 25, 734–750. [Google Scholar] [CrossRef]
- Cohen, J. The Cost of Dichotomization. Appl. Psychol. Meas. 1983, 7, 249–253. [Google Scholar] [CrossRef]
- Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Folleco, A. An empirical study of the classification performance of learnerson imbalanced and noisy software quality data. Inf. Sci. 2014, 259, 571–595. [Google Scholar] [CrossRef]
- Rajbahadur, G.K.; Wang, S.; Kamei, Y.; Hassan, A.E. Impact of Discretization Noise of the Dependent Variable on Machine Learning Classifiers in Software Engineering. IEEE Trans. Softw. Eng. 2021, 47, 1414–1430. [Google Scholar] [CrossRef]
- Esme, E. Enhancing classification accuracy through feature extraction: A comparative study of discretization and clustering approaches on sensor-based datasets. Knowl. Inf. Syst. 2023, 66, 339–356. [Google Scholar] [CrossRef]
- Fayyad, U.M.; Irani, K.B. Multi-interval discretization of continuous-valued attributes for classification learning. Comput. Sci. Math. 1993, 1, 1022–1027. [Google Scholar]
- Fonollosa, J.; Fernández, L.; Gutiérrez-Gálvez, A.; Huerta, R.; Marco, S. Calibration transfer and drift counteraction in chemical sensor arrays using Direct Standardization. Sensors Actuators B Chem. 2016, 236, 1044–1053. [Google Scholar] [CrossRef]
- Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R.P.; Song, Q. Boosting: An ensemble learning tool for compound classification and QSAR modeling. J. Chem. Inf. Model. 2005, 45, 786–799. [Google Scholar] [CrossRef]
- Li, S.; Feng, L.; Ge, Y.; Zhu, L.; Zhao, L. An Ensemble Learning Method for Robot Electronic Nose with Active Perception. Sensors 2021, 21, 3941. [Google Scholar] [CrossRef]
- Wijaya, D.R.; Afianti, F.; Arifianto, A.; Rahmawati, D.; Kodogiannis, V.S. Ensemble machine learning approach for electronic nose signal processing. Sens. Bio-Sens. Res. 2022, 36, 100495. [Google Scholar] [CrossRef]
- Wang, J.; Lei, B.; Yang, Z.; Lei, S. Self-repairing infrared electronic nose based on ensemble learning and PCA fault diagnosis. Infrared Phys. Technol. 2022, 127, 104465. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Y.; Zhang, Y.; Lv, W.; Chen, X.; Zeng, M.; Yang, J.; Su, Y.; Hu, N.; Yang, Z. Portable electronic nose system with elastic architecture and fault tolerance based on edge computing, ensemble learning, and sensor swarm. Sens. Actuators B Chem. 2023, 375, 132925. [Google Scholar] [CrossRef]
Sensor Number | Sensor Name | Main Response Characteristics | Reference |
---|---|---|---|
S1 | MQ8 | Hydrogen | 100–1000 ppm |
S2 | TGS2600 | Hydrogen, ethanol, methane, isobutane | 1–30 ppm |
S3 | TGS2602 | Ammonia and hydrogen sulfide | 1–30 ppm |
S4 | MQ135 | Ammonia, hydrogen sulfide, benzene | 10–1000 ppm |
S5 | TGS2603 | Ethanol, trimethylamine, hydrogen sulfide | 1–100 ppm |
S6 | TGS2609 | Hydrogen, carbon monoxide | 1–30 ppm |
S7 | MQ136 | Hydrogen sulfide | 1–200 ppm |
S8 | TGS2611 | Methane | 1–500 ppm |
S9 | TGS2620 | Vapors of organic solvents, alcohol, methanol | 50–5000 ppm |
S10 | MQ138 | Methylbenzene, acetone, ethanol, methanal | 5–500 ppm |
S11 | TGS2610 | Propane, butane | 500–5000 ppm |
S12 | TGS2612 | Methane, propane, butane | 500–5000 ppm |
Experimental Parameters | Value |
---|---|
pre-heating time | 60 min |
pre-cleaning time | 60 s |
injection time | 90 s |
cleaning time | 90 s |
sampling frequency | 1 Hz |
headspace time | 10 min |
pre-cleaning/cleaning rate | 6.5 L/min |
sample injection rate | 5 L/min |
Feature Properties | Type | Value |
---|---|---|
Mean value | Time domain | |
Maximum value | Time domain | |
Area value during injecting | Time domain | |
Average stable value | Time domain | |
Maximum difference value | Time domain | |
Average difference value | Time domain | |
Maximum second-order difference | Time domain | |
The biggest five amplitudes after Fast Fourier Transform | Frequency domain |
Classification Algorithm | Without Discretization | Discretization | |||
---|---|---|---|---|---|
Training Acc (%) | Test Acc (%) | Training Acc (%) | Test Acc (%) | Acc (%) | |
SVM | 92.42 ± 1.28 | 89.17 ± 0.45 | 93.56 ± 0.83 | 89.11 ± 0.57 | −0.06 |
LR | 90.45 ± 1.28 | 85.08 ± 0.87 | 92.23 ± 1.23 | 87.05 ± 0.67 | 1.97 |
KNN | 89.02 ± 1.38 | 83.94 ± 0.88 | 95.15 ± 0.89 | 86.74 ± 0.74 | 2.80 |
Single CNN | 94.55 ± 1.06 | 90.98 ± 0.69 | 96.74 ± 1.18 | 91.67 ± 0.51 | 1.01 |
ECNN | 98.11 ± 0.78 | 93.11 ± 0.53 | 98.86 ± 0.61 | 94.70 ± 0.45 | 1.59 |
Classification Algorithm | Without Discretization | Discretization | |||
---|---|---|---|---|---|
Training Acc (%) | Test Acc (%) | Training Acc (%) | Test Acc (%) | Acc (%) | |
SVM | 87.42 ± 0.67 | 77.95 ± 1.12 | 89.70 ± 1.10 | 81.44 ± 0.36 | 3.49 |
LR | 90.68 ± 0.58 | 82.05 ± 0.81 | 87.73 ± 0.83 | 84.43 ± 1.18 | 2.38 |
KNN | 79.62 ± 0.96 | 70.83 ± 0.91 | 83.03 ± 1.25 | 79.39 ± 0.77 | 8.56 |
Single CNN | 89.39 ± 1.23 | 84.29 ± 0.96 | 93.64 ± 0.95 | 87.02 ± 1.03 | 2.73 |
ECNN | 93.41 ± 0.67 | 87.03 ± 0.80 | 97.95 ± 1.27 | 90.76 ± 0.37 | 3.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Wei, Z.; Chen, C.; Huang, Y.; Zhu, J. Early Identification of Rotten Potatoes Using an Electronic Nose Based on Feature Discretization and Ensemble Convolutional Neural Network. Sensors 2024, 24, 3105. https://doi.org/10.3390/s24103105
Lin H, Wei Z, Chen C, Huang Y, Zhu J. Early Identification of Rotten Potatoes Using an Electronic Nose Based on Feature Discretization and Ensemble Convolutional Neural Network. Sensors. 2024; 24(10):3105. https://doi.org/10.3390/s24103105
Chicago/Turabian StyleLin, Haonan, Zhenbo Wei, Changqing Chen, Yun Huang, and Jianxi Zhu. 2024. "Early Identification of Rotten Potatoes Using an Electronic Nose Based on Feature Discretization and Ensemble Convolutional Neural Network" Sensors 24, no. 10: 3105. https://doi.org/10.3390/s24103105
APA StyleLin, H., Wei, Z., Chen, C., Huang, Y., & Zhu, J. (2024). Early Identification of Rotten Potatoes Using an Electronic Nose Based on Feature Discretization and Ensemble Convolutional Neural Network. Sensors, 24(10), 3105. https://doi.org/10.3390/s24103105