Advancements in Detection and Mitigation Strategies for Petroleum-Derived Contaminants in Aquatic Environments: A Comprehensive Review
Abstract
:1. Introduction
2. Identification and Characterization: Traditional Techniques
3. Identification and Characterization: Sensor Approaches
4. Removing/Containing Actions
4.1. Classical Methods for Removal of PDPs
4.2. Bio-Based Materials in Oil Spill Remediation
5. Conclusions and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yue, R.; Ye, Z.; Gao, S.; Cao, Y.; Lee, K.; An, C.; Qu, Z.; Wan, S. Exploring the Use of Sodium Caseinate-Assisted Responsive Separation for the Treatment of Washing Effluents in Shoreline Oil Spill Response. Sci. Total Environ. 2023, 873, 162363. [Google Scholar] [CrossRef]
- Merlin, F.; Zhu, Z.; Yang, M.; Chen, B.; Lee, K.; Boufadel, M.C.; Isaacman, L.; Zhang, B. Dispersants as Marine Oil Spill Treating Agents: A Review on Mesoscale Tests and Field Trials. Environ. Syst. Res. 2021, 10, 37. [Google Scholar] [CrossRef]
- Anisuddin, S.; Al-Hashar, N.A.; Tahseen, S. Prevention of Oil Spill Pollution in Sea Water Using Locally Available Materials. Arab. J. Sci. Eng. 2005, 30, 143–152. [Google Scholar]
- Rovere, M.; Mercorella, A.; Frapiccini, E.; Funari, V.; Spagnoli, F.; Pellegrini, C.; Bonetti, A.S.; Veneruso, T.; Tassetti, A.N.; Dell’Orso, M.; et al. Geochemical and Geophysical Monitoring of Hydrocarbon Seepage in the Adriatic Sea. Sensors 2020, 20, 1504. [Google Scholar] [CrossRef] [PubMed]
- Othumpangat, S.; Castranova, V. Oil Spills. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 677–681. ISBN 978-0-12-386455-0. [Google Scholar]
- Wegeberg, S.; Fritt-Rasmussen, J.; Gustavson, K.; Lilover, M.-J.; Boertmann, D.; Christensen, T.; Johansen, K.L.; Spelling-Clausen, D.; Rigét, F.; Mosbech, A. EOS—Environment & Oil Spill Response. An Analytic Tool for Environmental Assessments to Support Oil Spill Response Planning: Framework, Principles, and Proof-of-Concept by an Arctic Example. Mar. Pollut. Bull. 2024, 199, 115948. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; An, C.; Yue, R.; Bi, H.; Zhao, S. Assessment of the Infiltration of Water-in-Oil Emulsion into Soil after Spill Incidents. Sci. Total Environ. 2023, 896, 165325. [Google Scholar] [CrossRef]
- Briggs, I.L.; Briggs, B.C. Chapter 10—Petroleum Industry Activities and Human Health. In The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem; Ndimele, P.E., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 143–147. ISBN 978-0-12-809399-3. [Google Scholar]
- Pauzi Zakaria, M.; Okuda, T.; Takada, H. Polycyclic Aromatic Hydrocarbon (PAHs) and Hopanes in Stranded Tar-Balls on the Coasts of Peninsular Malaysia: Applications of Biomarkers for Identifying Sources of Oil Pollution. Mar. Pollut. Bull. 2001, 42, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, A.J.; Frank, R.A.; Gillis, P.L.; Parrott, J.L.; Marentette, J.R.; Brown, L.R.; Hooey, T.; Vanderveen, R.; McInnis, R.; Brunswick, P.; et al. Toxicity of Naphthenic Acids to Invertebrates: Extracts from Oil Sands Process-Affected Water versus Commercial Mixtures. Environ. Pollut. 2017, 227, 271–279. [Google Scholar] [CrossRef]
- Jung, J.-H.; Kim, M.; Yim, U.H.; Ha, S.Y.; Shim, W.J.; Chae, Y.S.; Kim, H.; Incardona, J.P.; Linbo, T.L.; Kwon, J.-H. Differential Toxicokinetics Determines the Sensitivity of Two Marine Embryonic Fish Exposed to Iranian Heavy Crude Oil. Environ. Sci. Technol. 2015, 49, 13639–13648. [Google Scholar] [CrossRef]
- Lau, T.-K.; Huang, K.-H. A Timely and Accurate Approach to Nearshore Oil Spill Monitoring Using Deep Learning and GIS. Sci. Total Environ. 2024, 912, 169500. [Google Scholar] [CrossRef]
- Al-Majed, A.A.; Adebayo, A.R.; Hossain, M.E. A Sustainable Approach to Controlling Oil Spills. J. Environ. Manage. 2012, 113, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Ogunbiyi, O.; Al-Rewaily, R.; Saththasivam, J.; Lawler, J.; Liu, Z. Oil Spill Management to Prevent Desalination Plant Shutdown from the Perspectives of Offshore Cleanup, Seawater Intake and Onshore Pretreatment. Desalination 2023, 564, 116780. [Google Scholar] [CrossRef]
- D’Ugo, E.; Mukherjee, A.; Giuseppetti, R.; Tucci, M.; Bucci, P.; Aulenta, F.; Laneve, G.; Magurano, F. Integration of Satellite Surveillance and Metagenomics for the Monitoring and Protection of Water Basins from Oil Spills. Environ. Adv. 2024, 15, 100498. [Google Scholar] [CrossRef]
- Cervantes-Hernández, P.; Celis-Hernández, O.; Ahumada-Sempoal, M.A.; Reyes-Hernández, C.A.; Gómez-Ponce, M.A. Combined Use of SAR Images and Numerical Simulations to Identify the Source and Trajectories of Oil Spills in Coastal Environments. Mar. Pollut. Bull. 2024, 199, 115981. [Google Scholar] [CrossRef]
- Shaban, M.; Salim, R.; Abu Khalifeh, H.; Khelifi, A.; Shalaby, A.; El-Mashad, S.; Mahmoud, A.; Ghazal, M.; El-Baz, A. A Deep-Learning Framework for the Detection of Oil Spills from SAR Data. Sensors 2021, 21, 2351. [Google Scholar] [CrossRef]
- Kolokoussis, P.; Karathanassi, V. Oil Spill Detection and Mapping Using Sentinel 2 Imagery. J. Mar. Sci. Eng. 2018, 6, 4. [Google Scholar] [CrossRef]
- Topouzelis, K.N. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms. Sensors 2008, 8, 6642–6659. [Google Scholar] [CrossRef]
- Mason, R.P.; Kerley, G.I.H. Identification of Spilled Oils by Fluorescence Spectroscopy. Oil Chem. Pollut. 1988, 4, 57–70. [Google Scholar] [CrossRef]
- ATM Method D-3650; Annual Book of ASTM Standards. American Society for Testing Materials. ASTM: Philadelphia, PA, USA, 1997.
- ATM Method D-3414; Annual Book of ASTM Standards. American Society for Testing Materials. ASTM: Philadelphia, PA, USA, 1997; Volume 11.
- EPA Method 418.1; Methods for Chemical Analysis of Water and Wastes. EPA: Washington, DC, USA, 1986; Volume 11.
- Clark, R.N.; Swayze, G.A.; Leifer, I.; Livo, K.E.; Kokaly, R.F.; Hoefen, T.; Lundeen, S.; Eastwood, M.; Green, R.O.; Pearson, N.; et al. A Method for Quantitative Mapping of Thick Oil Spills Using Imaging Spectroscopy; U.S. Geological Survey: Reston, VA, USA, 2010.
- Wang, L.; Zhuo, L.; He, Y.; Zhao, Y.; Li, W.; Wang, X.; Lee, F. Oil spill identification by near-infrared spectroscopy. Spesctroscopy Spectr. Anal. 2004, 24, 1537–1539. [Google Scholar]
- Baszanowska, E.; Otremba, Z. Fluorometric Detection of Oil Traces in a Sea Water Column. Sensors 2022, 22, 2039. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, B.; Zhong, M.; Hao, H. Research on the Fluorescence Distribution of the Emulsified Oil Spills on the Sea Surface Based on LIF. Opt. Commun. 2022, 520, 128492. [Google Scholar] [CrossRef]
- Burlakovs, J.; Kaczala, F.; Orupõld, K.; Bhatnagar, A.; Vincevica-Gaile, Z.; Rudovica, V.; Kriipsalu, M.; Hogland, M.; Stapkevica, M.; Hogland, W.; et al. Field-Portable X-Ray Fluorescence Spectrometry as Rapid Measurement Tool for Landfill Mining Operations: Comparison of Field Data vs. Laboratory Analysis. Int. J. Environ. Anal. Chem. 2015, 95, 609–617. [Google Scholar] [CrossRef]
- McKenna, A.M.; Nelson, R.K.; Reddy, C.M.; Savory, J.J.; Kaiser, N.K.; Fitzsimmons, J.E.; Marshall, A.G.; Rodgers, R.P. Expansion of the Analytical Window for Oil Spill Characterization by Ultrahigh Resolution Mass Spectrometry: Beyond Gas Chromatography. Environ. Sci. Technol. 2013, 47, 7530–7539. [Google Scholar] [CrossRef]
- Gaines, R.B.; Frysinger, G.S.; Reddy, C.M.; Nelson, R.K. 5—Oil Spill Source Identification by Comprehensive Two-Dimensional Gas Chromatography (GC × GC). In Oil Spill Environmental Forensics; Wang, Z., Stout, S.A., Eds.; Academic Press: Burlington, VT, USA, 2007; ISBN 978-0-12-369523-9. [Google Scholar]
- Theobald, N. Investigation of ‘Petroleum Hydrocarbons’ in Seawater, Using High Performance Liquid Chromatography with Fluorescence Detection. Mar. Pollut. Bull. 1989, 20, 134–140. [Google Scholar] [CrossRef]
- Adhikari, P.L.; Wong, R.L.; Overton, E.B. Application of Enhanced Gas Chromatography/Triple Quadrupole Mass Spectrometry for Monitoring Petroleum Weathering and Forensic Source Fingerprinting in Samples Impacted by the Deepwater Horizon Oil Spill. Chemosphere 2017, 184, 939–950. [Google Scholar] [CrossRef]
- Radović, J.R.; Romero, I.C.; Oldenburg, T.B.P.; Larter, S.R.; Tunnell, J.W. 40 Years of Weathering of Coastal Oil Residues in the Southern Gulf of Mexico. In Deep Oil Spills: Facts, Fate, and Effects; Murawski, S.A., Ainsworth, C.H., Gilbert, S., Hollander, D.J., Paris, C.B., Schlüter, M., Wetzel, D.L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 328–340. ISBN 978-3-030-11605-7. [Google Scholar]
- Stanford, L.A.; Kim, S.; Klein, G.C.; Smith, D.F.; Rodgers, R.P.; Marshall, A.G. Identification of Water-Soluble Heavy Crude Oil Organic-Acids, Bases, and Neutrals by Electrospray Ionization and Field Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environ. Sci. Technol. 2007, 41, 2696–2702. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, G.; Yang, C.; Shah, K.; Hollebone, B.P.; Laforest, S.; Lambert, P.; Brown, C.E.; Situ, J.; Verkuyl, A. Occurrence and Characterisation of Naphthenic Acid Fraction Components in Oil Residues and Sediments Stranded on the Shoreline of Chedabucto Bay, Nova Scotia, Canada. Environ. Earth. Sci. 2021, 80, 669. [Google Scholar] [CrossRef]
- Nemirovskaya, I.A.; Glyaznetsova, Y.S. The Content and Composition of Organic Compounds in the Bottom Sediments of the Norilsk-Pyasina Water System One Year after the Accidental Spill of Diesel Fuel. Mar. Pollut. Bull. 2024, 199, 115990. [Google Scholar] [CrossRef] [PubMed]
- Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Barbero, G.F.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. Validation of an HS-MS Method for Direct Determination and Classification of Ignitable Liquids. Microchem J. 2017, 132, 358–364. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Barbero, G.F.; Palma, M.; Ayuso, J.; Álvarez, J.A.; Barroso, C.G. Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints. Sensors 2017, 17, 2544. [Google Scholar] [CrossRef] [PubMed]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Novel Method Based on Ion Mobility Spectrometry Sum Spectrum for the Characterization of Ignitable Liquids in Fire Debris. Talanta 2019, 199, 189–194. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Aliaño-González, M.J.; Barbero, G.F.; Palma, M.; Barroso, C.G. Characterization of Petroleum-Based Products in Water Samples by HS-MS. Fuel 2018, 222, 506–512. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C. Chemometric Techniques in Oil Spill Identification: A Case Study in Dalian 7.16 Oil Spill Accident of China. Mar. Environ. Res. 2022, 182, 105799. [Google Scholar] [CrossRef] [PubMed]
- Jaén-González, L.; Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. A Novel Method Based on Headspace-Ion Mobility Spectrometry for the Detection and Discrimination of Different Petroleum Derived Products in Seawater. Sensors 2021, 21, 2151. [Google Scholar] [CrossRef]
- Mitkidou, S.; Kokkinos, N.; Emmanouilidou, E.; Yohannah, Y.; Spanos, T.; Chatzichristou, C.; Ene, A. Investigation of Petroleum Hydrocarbon Fingerprints of Water and Sediment Samples of the Nestos River Estuary in Northern Greece. Appl. Sci. 2022, 12, 1636. [Google Scholar] [CrossRef]
- De Kerf, T.; Gladines, J.; Sels, S.; Vanlanduit, S. Oil Spill Detection Using Machine Learning and Infrared Images. Remote Sens. 2020, 12, 4090. [Google Scholar] [CrossRef]
- Mirnaghi, F.S.; Soucy, N.; Hollebone, B.P.; Brown, C.E. Rapid Fingerprinting of Spilled Petroleum Products Using Fluorescence Spectroscopy Coupled with Parallel Factor and Principal Component Analysis. Chemosphere 2018, 208, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of Soil and Water Contaminated with Petroleum Hydrocarbon: A Review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Kuyukina, M.S.; Krivoruchko, A.V.; Elkin, A.A.; Makarov, S.O.; Cunningham, C.J.; Peshkur, T.A.; Atlas, R.M.; Philp, J.C. Oil Spill Problems and Sustainable Response Strategies through New Technologies. Environ. Sci. Process Impacts 2015, 17, 1201–1219. [Google Scholar] [CrossRef]
- Dhaka, A.; Chattopadhyay, P. A Review on Physical Remediation Techniques for Treatment of Marine Oil Spills. J. Environ. Manag. 2021, 288, 112428. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.; Fegley, S.R.; Dahlin, J.A.; Wood, C. Oil Spill Response-Related Injuries on Sand Beaches: When Shoreline Treatment Extends the Impacts beyond the Oil. Mar. Ecol. Prog. Ser. 2017, 576, 203–218. [Google Scholar] [CrossRef]
- Dave, D.; Ghaly, A.E. Remediation Technologies for Marine Oil Spills: A Critical Review and Comparative Analysis. AJES 2011, 7, 423–440. [Google Scholar] [CrossRef]
- Fritt-Rasmussen, J.; Wegeberg, S.; Lassen, P.; Wilms, L.B.; Renvald, L.; Larsen, M.B.; Geertz-Hansen, O.; Wiktor, J.; Gustavson, K. Coastline In-Situ Burning of Oil Spills, Analysis of a Greenland Field Experiment. J. Hazard. Mater. 2023, 441, 129976. [Google Scholar] [CrossRef]
- Strelitz, J.; Keil, A.P.; Richardson, D.B.; Heiss, G.; Gammon, M.D.; Kwok, R.K.; Sandler, D.P.; Engel, L.S. Self-Reported Myocardial Infarction and Fatal Coronary Heart Disease among Oil Spill Workers and Community Members 5 Years after Deepwater Horizon. Environ. Res. 2019, 168, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Aurell, J.; Gullett, B.K. Aerostat Sampling of PCDD/PCDF Emissions from the Gulf Oil Spill In Situ Burns. Environ. Sci. Technol. 2010, 44, 9431–9437. [Google Scholar] [CrossRef] [PubMed]
- Aurell, J.; Holder, A.; Gullett, B.; Lamie, N.; Arsava, K.; Conmy, R.; Sundaravadivelu, D.; Mitchell, W.; Stone, K. Analysis of Emissions and Residue from Methods to Improve Efficiency of At-Sea, in Situ Oil Spill Burns. Mar. Pollut. Bull. 2021, 173, 113016. [Google Scholar] [CrossRef] [PubMed]
- Abidli, A.; Huang, Y.; Cherukupally, P.; Bilton, A.M.; Park, C.B. Novel Separator Skimmer for Oil Spill Cleanup and Oily Wastewater Treatment: From Conceptual System Design to the First Pilot-Scale Prototype Development. Environ. Technol. Innov. 2020, 18, 100598. [Google Scholar] [CrossRef]
- Schrope, M. Oil Spill: Deep Wounds. Nature 2011, 472, 152–154. [Google Scholar] [CrossRef]
- Jernelöv, A. How to Defend against Future Oil Spills. Nature 2010, 466, 182–183. [Google Scholar] [CrossRef]
- Nam, C.; Li, H.; Zhang, G.; Lutz, L.R.; Nazari, B.; Colby, R.H.; Chung, T.C.M. Practical Oil Spill Recovery by a Combination of Polyolefin Absorbent and Mechanical Skimmer. ACS Sustain. Chem. Eng. 2018, 6, 12036–12045. [Google Scholar] [CrossRef]
- Skirdin, K.V.; Kazmina, O.V. An Analysis of Oil Sorbents: Types, Characteristics, and Effectiveness. Pet. Chem. 2022, 62, 1139–1153. [Google Scholar] [CrossRef]
- Mohammadi, L.; Rahdar, A.; Bazrafshan, E.; Dahmardeh, H.; Susan, M.A.B.H.; Kyzas, G.Z. Petroleum Hydrocarbon Removal from Wastewaters: A Review. Processes 2020, 8, 447. [Google Scholar] [CrossRef]
- Schrader, E.L. A Practical Composition of Organic, Synthetic and Inorganic Sorbents. Clean Gulf 1993, 93, 17–22. [Google Scholar]
- Hoaghia, M.-A.; Aschilean, I.; Barbalau-Fuss, V.; Becze, A.; Cadar, O.; Roman, C.; Roman, M.; Senila, M.; Kovacs, E. Activated Natural Zeolites for Petroleum Hydrocarbons Adsorption. Stud. UBB Chem. 2021, 66, 95–104. [Google Scholar] [CrossRef]
- Zabermawi, N.M.; Bestawy, E.E. Effective Treatment of Petroleum Oil–Contaminated Wastewater Using Activated Sludge Modified with Magnetite/Silicon Nanocomposite. Environ. Sci. Pollut. Res. 2024, 31, 17634–17650. [Google Scholar] [CrossRef] [PubMed]
- Jumroonrat, R.; Poyai, T.; Kang, S.; Kim, H.; Rakruam, P.; Chawaloesphonsiya, N.; Painmanakul, P. Recovery of Green Solvent Contaminated with Petroleum Hydrocarbons by Selective Adsorption onto Granular Activated Carbon. J. Environ. Chem. Eng. 2023, 11, 109962. [Google Scholar] [CrossRef]
- Mapelli, F.; Scoma, A.; Michoud, G.; Aulenta, F.; Boon, N.; Borin, S.; Kalogerakis, N.; Daffonchio, D. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms. Trends Biotechnol. 2017, 35, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Nyankson, E.; Olasehinde, O.; John, V.T.; Gupta, R.B. Surfactant-Loaded Halloysite Clay Nanotube Dispersants for Crude Oil Spill Remediation. Ind. Eng. Chem. Res. 2015, 54, 9328–9341. [Google Scholar] [CrossRef]
- Lewis, M.; Pryor, R. Toxicities of Oils, Dispersants and Dispersed Oils to Algae and Aquatic Plants: Review and Database Value to Resource Sustainability. Environ. Pollut. 2013, 180, 345–367. [Google Scholar] [CrossRef]
- Shafir, S.; Van Rijn, J.; Rinkevich, B. Short and Long Term Toxicity of Crude Oil and Oil Dispersants to Two Representative Coral Species. Environ. Sci. Technol. 2007, 41, 5571–5574. [Google Scholar] [CrossRef]
- Couillard, C.M.; Lee, K.; Légaré, B.; King, T.L. Effect of Dispersant on the Composition of the Water-Accommodated Fraction of Crude Oil and Its Toxicity to Larval Marine Fish. Environ. Toxicol. Chem. 2005, 24, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Almeda, R.; Hyatt, C.; Buskey, E.J. Toxicity of Dispersant Corexit 9500A and Crude Oil to Marine Microzooplankton. Ecotoxicol. Environ. Saf. 2014, 106, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Fuller, C.; Bonner, J.; Page, C.; Ernest, A.; McDonald, T.; McDonald, S. Comparative Toxicity of Oil, Dispersant, and Oil plus Dispersant to Several Marine Species. Environ. Toxicol. Chem. 2004, 23, 2941–2949. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Chandran, P. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol. Res. Int. 2010, 2011, 941810. [Google Scholar] [CrossRef] [PubMed]
- Prince, R.C.; McFarlin, K.M.; Butler, J.D.; Febbo, E.J.; Wang, F.C.Y.; Nedwed, T.J. The Primary Biodegradation of Dispersed Crude Oil in the Sea. Chemosphere 2013, 90, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Brakstad, O.G.; Nordtug, T.; Throne-Holst, M. Biodegradation of Dispersed Macondo Oil in Seawater at Low Temperature and Different Oil Droplet Sizes. Mar. Pollut. Bull. 2015, 93, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Gericke, M.; Amaral, A.J.R.; Budtova, T.; De Wever, P.; Groth, T.; Heinze, T.; Höfte, H.; Huber, A.; Ikkala, O.; Kapuśniak, J.; et al. The European Polysaccharide Network of Excellence (EPNOE) Research Roadmap 2040: Advanced Strategies for Exploiting the Vast Potential of Polysaccharides as Renewable Bioresources. Carbohydr. Polym. 2024, 326, 121633. [Google Scholar] [CrossRef]
- Saheed, I.O.; Oh, W.D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants—A Review. J. Hazard. Mater. 2021, 408, 124889. [Google Scholar] [CrossRef]
- Brião, G.d.V.; de Andrade, J.R.; da Silva, M.G.C.; Vieira, M.G.A. Removal of Toxic Metals from Water Using Chitosan-Based Magnetic Adsorbents. A Review. Environ. Chem. Lett. 2020, 18, 1145–1168. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Zhang, J.; Wang, Y.; Wen, H.; Xie, J. Role of Chitosan-Based Hydrogels in Pollutants Adsorption and Freshwater Harvesting: A Critical Review. Int. J. Biol. Macromol. 2021, 189, 53–64. [Google Scholar] [CrossRef] [PubMed]
- da Silva Alves, D.C.; Healy, B.; Pinto, L.A.d.A.; Cadaval, T.R.S.; Breslin, C.B. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021, 26, 594. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xue, C.; Mao, X. Chitosan: Structural Modification, Biological Activity and Application. Int. J. Biol. Macromol. 2020, 164, 4532–4546. [Google Scholar] [CrossRef] [PubMed]
- Baig, U.; Faizan, M.; Waheed, A. A Review on Super-Wettable Porous Membranes and Materials Based on Bio-Polymeric Chitosan for Oil-Water Separation. Adv. Colloid Interface Sci. 2022, 303, 102635. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Peng, M.; Zhu, J.; Li, Y.-D.; Zeng, J.-B. Mussel-Inspired Chitosan Modified Superhydrophilic and Underwater Superoleophobic Cotton Fabric for Efficient Oil/Water Separation. Carbohydr. Polym. 2020, 244, 116449. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Y. Facile and Green Fabrication of Porous Chitosan Aerogels for Highly Efficient Oil/Water Separation and Metal Ions Removal from Water. J. Environ. Chem. Eng. 2023, 11, 109689. [Google Scholar] [CrossRef]
- Ling, H.; Wang, L.; Lin, Q.; Huang, Q.; Zhang, X.; Ren, J.; Li, N.; Zhou, C.; Lin, Z.; Zhou, J.; et al. Antimicrobial Cellulose Paper Tuned with Chitosan Fibers for High-Flux Oil/Water Separation. Carbohydr. Polym. 2023, 312, 120794. [Google Scholar] [CrossRef]
- Peng, H.; Wu, J.; Wang, Y.; Wang, H.; Liu, Z.; Shi, Y.; Guo, X. A Facile Approach for Preparation of Underwater Superoleophobicity Cellulose/Chitosan Composite Aerogel for Oil/Water Separation. Appl. Phys. A 2016, 122, 516. [Google Scholar] [CrossRef]
- Meng, G.; Peng, H.; Wu, J.; Wang, Y.; Wang, H.; Liu, Z.; Guo, X. Fabrication of Superhydrophobic Cellulose/Chitosan Composite Aerogel for Oil/Water Separation. Fibers Polym 2017, 18, 706–712. [Google Scholar] [CrossRef]
- Yu, H.; Liu, H.; Yuan, X.; Ding, W.; Li, Y.; Wang, J. Separation of Oil-Water Emulsion and Adsorption of Cu(II) on a Chitosan-Cellulose Acetate-TiO2 Based Membrane. Chemosphere 2019, 235, 239–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, M.; Li, L.; Fan, B.; Liu, Y.; Li, R.; Ren, X.; Huang, T.-S.; Kim, I.S. Construction of Aerogels Based on Nanocrystalline Cellulose and Chitosan for High Efficient Oil/Water Separation and Water Disinfection. Carbohydr. Polym. 2020, 243, 116461. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Zhao, X.-Q.; Wahid, F.; Cui, J.-X.; Wang, Y.-Y.; Zhong, C. Cellulose-Based Special Wetting Materials for Oil/Water Separation: A Review. Int. J. Biol. Macromol. 2021, 185, 890–906. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhu, L.; Li, H.; Zhang, C.; Xue, J.; Wang, R.; Qiao, X.; Xue, Q. Enhancing Oil-in-Water Emulsion Separation Performance of Polyvinyl Alcohol Hydrogel Nanofibrous Membrane by Squeezing Coalescence Demulsification. J. Membr. Sci. 2021, 630, 119324. [Google Scholar] [CrossRef]
- Ao, C.; Zhao, J.; Li, Q.; Zhang, J.; Huang, B.; Wang, Q.; Gai, J.; Chen, Z.; Zhang, W.; Lu, C. Biodegradable All-Cellulose Composite Membranes for Simultaneous Oil/Water Separation and Dye Removal from Water. Carbohydr. Polym. 2020, 250, 116872. [Google Scholar] [CrossRef]
- Alazab, A.A.; Saleh, T.A. Magnetic Hydrophobic Cellulose-Modified Polyurethane Filter for Efficient Oil-Water Separation in a Complex Water Environment. J. Water Process Eng. 2022, 50, 103125. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, F.; Yue, X.; Tian, Q.; Yang, D.; Zhang, T. Eco-Friendly Self-Crosslinking Cellulose Membrane with High Mechanical Properties from Renewable Resources for Oil/Water Emulsion Separation. J. Environ. Chem. Eng. 2021, 9, 105857. [Google Scholar] [CrossRef]
- Zapata, K.; Carrasco-Marín, F.; Arias, J.P.; Castelo-Quibén, J.; Franco, C.A.; Rojano, B.; Cortés, F.B. Novel Biomaterial Design Based on Pseudomonas Stutzeri–Carbon Xerogel Microspheres for Hydrocarbon Removal from Oil-in-Saltwater Emulsions: A New Proposed Treatment of Produced Water in Oilfields. J. Water Process Eng. 2020, 35, 101222. [Google Scholar] [CrossRef]
- Xu, K.; Hasi, Q.; Mu, X.; Xiao, C.; Zhang, Y.; Jiang, X.; Xu, J.; Chen, L.; Li, A. Lipophilic, Nanocellulose Based Macroporous Sponge Loaded with Mixed Microorganisms for Efficient Elimination of Petroleum Hydrocarbon Pollution in Water. Cellulose 2022, 29, 6161–6179. [Google Scholar] [CrossRef]
- Galdino, C.J.S.; Maia, A.D.; Meira, H.M.; Souza, T.C.; Amorim, J.D.P.; Almeida, F.C.G.; Costa, A.F.S.; Sarubbo, L.A. Use of a Bacterial Cellulose Filter for the Removal of Oil from Wastewater. Process Biochem. 2020, 91, 288–296. [Google Scholar] [CrossRef]
- Wahid, F.; Zhao, X.J.; Duan, Y.X.; Zhao, X.Q.; Jia, S.R.; Zhong, C. Designing of Bacterial Cellulose-Based Superhydrophilic/Underwater Superoleophobic Membrane for Oil/Water Separation. Carbohydr. Polym. 2021, 257, 117611. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yue, M.; Yuan, F.; Yang, L.; Chen, C.; Sun, D. Bio-Inspired Fabrication of Highly Permeable and Anti-Fouling Ultrafiltration Membranes Based on Bacterial Cellulose for Efficient Removal of Soluble Dyes and Insoluble Oils. J. Membr. Sci. 2021, 621, 118982. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Li, Y.; Ren, J.; Pei, C. Effect of Cellulose Nanocrystals on Bacterial Cellulose Hydrogel for Oil-Water Separation. Sep. Purif. Technol. 2023, 304, 122349. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, X.; Wahid, F.; Zhao, X.; Qin, X.; Bai, H.; Xie, Y.; Zhong, C.; Jia, S. Sustainable, Superhydrophobic Membranes Based on Bacterial Cellulose for Gravity-Driven Oil/Water Separation. Carbohydr. Polym. 2021, 253, 117220. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, H.; Yu, Y.; Li, H.; Li, H.; Bai, J.; Shi, F.; Liu, J. Bacterial Cellulose Biomass Aerogels for Oil-Water Separation and Thermal Insulation. J. Environ. Chem. Eng. 2023, 11, 110403. [Google Scholar] [CrossRef]
- Valdivia-Rivera, S.; Herrera-Pool, I.E.; Ayora-Talavera, T.d.R.; Cuevas-Bernardino, J.C.; García-Cruz, U.; Pacheco, N.; Lizardi-Jiménez, M.A. Novel Use of Agro-Industrial Waste and Residues for Bioencapsulation and Its Application in Petroleum Hydrocarbons Bioremediation. Biocatal. Agric. Biotechnol. 2024, 57, 103099. [Google Scholar] [CrossRef]
- Silvani, L.; Vrchotova, B.; Kastanek, P.; Demnerova, K.; Pettiti, I.; Papini, M.P. Characterizing Biochar as Alternative Sorbent for Oil Spill Remediation. Sci. Rep. 2017, 7, 43912. [Google Scholar] [CrossRef]
- Khondoker, M.; Gurav, R.; Hwang, S. Utilization of Water Hyacinth (Eichhornia Crassipes) Biomass as Eco-Friendly Sorbent for Petroleum Oil Spill Cleanup. AQUA—Water Infrastruct. Ecosyst. Soc. 2024, 73, 183–199. [Google Scholar] [CrossRef]
- Freeman, D.H.; Ward, C.P. Sunlight-Driven Dissolution Is a Major Fate of Oil at Sea. Sci. Adv. 2022, 8, eabl7605. [Google Scholar] [CrossRef]
- Snyder, K.; Mladenov, N.; Richardot, W.; Dodder, N.; Nour, A.; Campbell, C.; Hoh, E. Persistence and Photochemical Transformation of Water Soluble Constituents from Industrial Crude Oil and Natural Seep Oil in Seawater. Mar. Pollut. Bull. 2021, 165, 112049. [Google Scholar] [CrossRef]
- Guan, Y.; Qiao, D.; Dong, L.; Chen, X.; Wang, Z.; Li, Y. Efficient Recovery of Highly Viscous Crude Oil Spill by Superhydrophobic Ocean Biomass-Based Aerogel Assisted with Solar Energy. Chem. Eng. J. 2023, 467, 143532. [Google Scholar] [CrossRef]
- Gbogbo, S.; Nyankson, E.; Agyei-Tuffour, B.; Adofo, Y.K.; Mensah, B. Multicomponent Photocatalytic-Dispersant System for Oil Spill Remediation. ACS Omega 2024, 9, 8797–8809. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.J.; Kaware, J.; Mumbai, N. Regeneration and Recovery in Adsorption- a Review. Int. J. Innov. Sci. Eng. Technol. 2014, 1, 61–64. [Google Scholar]
Authors/Reference | Samples | Analytical Technique | Statistical Tool | Results |
---|---|---|---|---|
Ferreiro et al. [41] | 70 PDPs: aromatic products, alcohol, normal alkanes, gasoline, diesel, lubricants, and paraffinic products. | HS-MS | TIMS, HCA, and LDA | 100% discrimination |
Wang et al. [42] | Six refined petroleum products from ships. Six samples Jinshatan Beach and Haibei Square. | GC-MS | HCA and PCA | 82.77% discrimination between samples |
Jaén-González et al. [43] | 16 PDPs in water: gasoline, diesel, lubricant and kerosene. Concentrations 8, 4, and 2 ppb. | HS-IMS | HCA, PCA, and LDA | 100% identification and characterization at 8 and 4 ppb. 100% identification at 2 ppb |
Mitkidou et al. [44] | Five petroleum product samples (jet fuel, gasoline, diesel fuel, heating oil, and bunker fuel) and 15 and 6 water and sediment samples from Nestos River | GC-MS | TIC | Completely difference between PDP samples. No PDPs detected in sediments and water samples |
De Kerf et al. [45] | Controlled oil spill in port | IR | Convolutional neural network | 89% discrimination |
Mirnaghi et al. [46] | 130 PDPs in different evaporative states | Fluorescence Spectroscopy | Parallel factor analysis and PCA | Complete differentiation between PDP samples. Method validated by official method GC-MS |
Method | Advantages | Disadvantages |
---|---|---|
Skimmers and Floating Barriers | Effective for recovering large quantities of floating oil on the water surface.Relatively fast and simple to deploy. Can be used in calm waters and some weather conditions. | Limited to surface oil recovery. Less effective in turbulent or rough waters. Require maintenance and continuous monitoring. |
Controlled Burning | Quick to reduce the amount of oil on the water surface. Can be used in remote or difficult-to-access areas. Does not generate additional waste beyond combustion emissions. | Can produce air pollutants and noxious gases. Not effective for large spills or in environmentally sensitive areas. Requires specific safety and control conditions. |
Dispersants | Help break up large oil slicks into smaller droplets. They facilitate the natural degradation of oil by microorganisms. Can be applied by plane or ship to cover large areas. | Potentially toxic to marine life and the aquatic ecosystem. They do not physically remove the oil, only disperse it in the water. Limited effectiveness depending on spill conditions and type of oil. |
Bioremediation | Uses microorganisms to degrade oil naturally. Lower environmental impact compared to chemical methods. Can be applied in shallow waters and shorelines. | Slow process, taking weeks or months to be completed. Limited effectiveness in cold or low-nutrient-concentration waters. Requires continuous monitoring to evaluate effectiveness. |
Absorbents | Physically removes oil from water and shorelines. Can be used in sensitive areas where other methods are impractical. Requires simple equipment. Possibility of reuse of both absorbent and PDP. | Generates solid waste that must be disposed of properly. Costly and laborious, especially in large spills. May cause disturbance to habitat and marine life during cleanup. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, H.; Aliaño-González, M.J.; Romano, A.; Medronho, B. Advancements in Detection and Mitigation Strategies for Petroleum-Derived Contaminants in Aquatic Environments: A Comprehensive Review. Sensors 2024, 24, 3284. https://doi.org/10.3390/s24113284
Duarte H, Aliaño-González MJ, Romano A, Medronho B. Advancements in Detection and Mitigation Strategies for Petroleum-Derived Contaminants in Aquatic Environments: A Comprehensive Review. Sensors. 2024; 24(11):3284. https://doi.org/10.3390/s24113284
Chicago/Turabian StyleDuarte, Hugo, María José Aliaño-González, Anabela Romano, and Bruno Medronho. 2024. "Advancements in Detection and Mitigation Strategies for Petroleum-Derived Contaminants in Aquatic Environments: A Comprehensive Review" Sensors 24, no. 11: 3284. https://doi.org/10.3390/s24113284
APA StyleDuarte, H., Aliaño-González, M. J., Romano, A., & Medronho, B. (2024). Advancements in Detection and Mitigation Strategies for Petroleum-Derived Contaminants in Aquatic Environments: A Comprehensive Review. Sensors, 24(11), 3284. https://doi.org/10.3390/s24113284