PMSNet: Multiscale Partial-Discharge Signal Feature Recognition Model via a Spatial Interaction Attention Mechanism
Abstract
:1. Introduction
2. Related Work
2.1. Partial-Discharge Signal Identification
2.2. Vision Transformer
2.3. Attention Mechanisms
3. Proposed Method
3.1. Overview of PMSNet
3.1.1. Multiscale Feature Fusion Pyramid
3.1.2. Down-Sampling Feature Boost Module
3.1.3. Spatial Interaction Multiple Attention Module
3.1.4. Feature Aggregation Module
4. Experimental Results and Discussion
4.1. Partial-Discharge Dataset
4.2. Comparative Identification Experiments
4.2.1. Classification Validation
4.2.2. Visualization
4.2.3. Differences in the Effects of Various Model Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, G.A.; Hassan, W.; Mahmood, F. Review on Partial Discharge Diagnostic Techniques for High Voltage Equipment in Power Systems. IEEE Access 2023, 2, 200–211. [Google Scholar] [CrossRef]
- Acheen, R. Risk assessment related to PD activity in electrical insulation systems of machines in flammable environment. In Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA, 12–16 June 2023; p. 4465. [Google Scholar]
- Bandara, S.; Rajeev, P.; Gad, E. Power Distribution System Faults and Wildfires: Mechanisms and Prevention. Forests 2023, 14, 1146–1152. [Google Scholar] [CrossRef]
- Stone, G.C. A perspective on online partial discharge monitoring for assessment of the condition of rotating machine stator winding insulation. IEEE Electr. Insul. Mag. 2012, 28, 8–13. [Google Scholar] [CrossRef]
- Carvalho, I.F.; da Costa, E.G.; Nobrega, L.A.M.M.; Silva, A.D.d.C. Identification of Partial Discharge Sources by Feature Extraction from a Signal Conditioning System. Sensors 2024, 24, 2226. [Google Scholar] [CrossRef] [PubMed]
- Beura, C.P.; Wolters, J.; Tenbohlen, S. Application of Pathfinding Algorithms in Partial Discharge Localization in Power Transformers. Sensors 2024, 24, 685. [Google Scholar] [CrossRef] [PubMed]
- Riera-Guasp, M.; Antonino-Daviu, J.A.; Capolino, G.A. Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art. IEEE Trans. Ind. Electron. 2015, 62, 1746–1759. [Google Scholar] [CrossRef]
- Choudhary, M.; Shafiq, M.; Kiitam, I.; Palu, I.; Hassan, W.; Singh, P.P. Investigation of partial discharge characteristics in XLPE cable insulation under increasing electrical stress. Eng. Fail. Anal. 2024, 158, 108006. [Google Scholar] [CrossRef]
- Monzón-Verona J, M.; González-Domínguez, P.; García-Alonso, S. Characterization of Partial Discharges in Dielectric Oils Using High-Resolution CMOS Image Sensor and Convolutional Neural Networks. Sensors 2024, 24, 1317. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhu, K.; Zhao, G. Efficient partial discharge signal denoising method via adaptive variational modal decomposition for infrared detectors. Infrared Phys. Technol. 2022, 125, 104230. [Google Scholar] [CrossRef]
- Okubo, H.; Hayakawa, N. A novel technique for partial discharge and breakdown investigation based on current pulse waveform analysis. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 736–744. [Google Scholar] [CrossRef]
- Hoshino, T.; Koyama, H.; Maruyama, S.; Hanai, M. Comparison of sensitivity between UHF method and IEC 60270 for onsite calibration in various GIS. IEEE Trans. Power Deliv. 2006, 21, 1948–1953. [Google Scholar] [CrossRef]
- Tenbohlen, S.; Denissov, D.; Hoek, S.; Markalous, S.M. Partial discharge measurement in the ultrahigh frequency (UHF) range. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1544–1552. [Google Scholar] [CrossRef]
- Gao, W.; Ding, D.; Liu, W. Research on the typical partial discharge using the UHF detection method for GIS. IEEE Trans. Power Deliv. 2011, 26, 2621–2629. [Google Scholar] [CrossRef]
- Fang, W.; Chen, G.; Li, W.; Xu, M.; Xie, W.; Chen, C.; Wang, W.; Zhu, Y. A PRPD-Based UHF Filtering and Noise Reduction Algorithm for GIS Partial Discharge. Sensors 2023, 23, 6763. [Google Scholar] [CrossRef] [PubMed]
- Albarracín-Sánchez, R.; Álvarez-Gómez, F.; Vera-Romero, C.A. Separation of partial discharge sources measured in the high-frequency range with HFCT sensors using PRPD-teff patterns. Sensors 2020, 20, 382. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fang, S.; Zhang, Z.; Li, D.; Lin, K.; Wang, J. MFDNet: Collaborative Poses Perception and Matrix Fisher Distribution for Head Pose Estimation. IEEE Trans. Multimed. 2022, 24, 2449–2460. [Google Scholar] [CrossRef]
- Satish, L.; Zeng, l. Artificial neural networks for recognition of 3-d partial discharge patterns. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 265–275. [Google Scholar] [CrossRef]
- Strachan, S.M.; Rudd, S.; McArthur, S.D.; Judd, M.D.; Meijer, S.; Gulski, E. Knowledge-based diagnosis of partial discharges in power transformers. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 259–268. [Google Scholar] [CrossRef]
- Li, J.; Liao, R.; Grzybowski, S.; Yang, L. Oil-paper aging evaluation by fuzzy clustering and factor analysis to statistical parameters of partial discharges. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 756–763. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, C.; Li, D.; Zhang, Z.; Lin, K.; Shen, X.; Xiong, N.N.; Wang, J. Multi-perspective social recommendation method with graph representation learning. Neurocomputing 2022, 468, 469–481. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, J.; Song, H.; Sheng, G. Fault Identification Based on PD Ultrasonic Signal Using RNN, DNN and CNN. In 2018 Condition Monitoring and Diagnosis (CMD); IEEE: New York, NY, USA, 2018; Volume 12, pp. 1–6. [Google Scholar]
- Zhang, A.; He, J.; Lin, Y.; Li, Q.; Yang, W.; Qu, G. Recognition of partial discharge of cable accessories based on convolutional neural network with small data set. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2020, 39, 431–446. [Google Scholar] [CrossRef]
- Kumar, H.; Shafiq, M.; Kauhaniemi, K.; Elmusrati, M. A Review on the Classification of Partial Discharges in Medium-Voltage Cables: Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques. Energies 2024, 17, 1142. [Google Scholar] [CrossRef]
- Li, J.; Jiang, T.; Harrison, R.; Grzybowski, S. Recognition of ultra high frequency partial discharge signals using multi-scale features. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1412–1420. [Google Scholar] [CrossRef]
- Sukma, T.R.; Khayam, U.; Sugawara, R. Classification of partial discharge sources using waveform parameters and phase-resolved partial discharge pattern as input for the artificial neural network. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23–26 September 2018; IEEE: New York, NY, USA, 2018; Volume 18, pp. 1–6. [Google Scholar]
- Herath. Comparison of supervised machine learning techniques for PD classification in generator insulation. In Proceedings of the 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 15–16 December 2017; pp. 1–6. [Google Scholar]
- Michał, K.; Daria, W. A Classification Method for Select Defects in Power Transformers Based on the Acoustic Signals. Sensors 2019, 23, 5212–5219. [Google Scholar]
- Li, G.; Wang, X.; Li, X.; Yang, A.; Rong, M. Partial Discharge Recognition with a Multi-Resolution Convolutional Neural Network. Sensors 2018, 18, 3512. [Google Scholar] [CrossRef] [PubMed]
- Puspitasari, N.; Khayam, U.; Suwarno; Kakimoto, Y.; Yoshikawa, H.; Kozako, M.; Hikita, M. Partial discharge waveform identification using image with convolutional neural network. In Proceedings of the 2019 54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania, 3–6 September 2019; IEEE: New York, NY, USA, 2019; Volume 22, pp. 1–4. [Google Scholar]
- Liu, H.; Zhang, C.; Deng, Y.; Xie, B.; Liu, T.; Zhang, Z.; Li, Y. TransIFC: Invariant Cues-aware Feature Concentration Learning for Efficient Fine-grained Bird Image Classification. IEEE Trans. Multimed. 2023, 1–14. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 11–19. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.; Jiang, Z.; Tay, F.E.H.; Feng, J.; Yan, S. Tokens-to-token vit: Training vision transformers from scratch on imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 558–567. [Google Scholar]
- Wu, H.; Xiao, B.; Codell, N. Cvt: Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 22–31. [Google Scholar]
- Liu, H.; Zhang, C.; Deng, Y.; Liu, T.; Zhang, Z.; Li, Y. Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer. IEEE Trans. Image Process 2023, 32, 6289–6302. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.; Chen, Y.; Zhang, Z.; Li, Y. EHPE: Skeleton Cues-based Gaussian Coordinate Encoding for Efficient Human Pose Estimation. IEEE Trans. Multimedia 2024, 11, 124–138. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11534–11542. [Google Scholar]
- Liu, T.; Liu, H.; Yang, B.; Zhang, Z. LDCNet: Limb Direction Cues-aware Network for Flexible Human Pose Estimation in Industrial Behavioral Biometrics Systems. IEEE Trans. Ind. Inf. 2024, 1–11. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Deng, Y.; Xie, B.; Li, Y. TokenHPE: Learning Orientation Tokens for Efficient Head Pose Estimation via Transformers. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 8897–8906. [Google Scholar]
- Lunetta, L.S.; Khayam, U.; Maulana, R. Design of pattern recognition application of partial discharge signals using artificial neural networks. In Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 9–10 July 2019; IEEE: New York, NY, USA, 2019; pp. 239–243. [Google Scholar]
- Khan, Y. Partial discharge pattern analysis using PCA and back-propagation artificial neural network for the estimation of size and position of metallic particle adhering to spacer in GIS. Electr. Eng. 2016, 98, 29–42. [Google Scholar] [CrossRef]
- Zeng, F.; Dong, Y.; Tang, J. Feature extraction and severity assessment of partial discharge under protrusion defect based on fuzzy comprehensive evaluation. IET Gener. Transm. Distrib. 2015, 9, 2493–2500. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, H.; Hu, X. PD pattern recognition of XLPE cable based on parameter optimal support vector machine algorithm. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; IEEE: New York, NY, USA, 2019; pp. 355–359. [Google Scholar]
- Zheng, Q.; Wang, R.; Tian, X.; Yu, Z.; Wang, H.; Elhanashi, A.; Saponara, S. A real-time transformer discharge pattern recognition method based on CNN-LSTM driven by few-shot learning. Electr. Power Syst. Res. 2023, 219, 109241. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, W.; Shen, D.; Luo, Y.; Yang, J. Multi-ource partial discharge pattern recognition algorithm based on DCGAN-Yolov5. IEEE Trans. Power Deliv. 2022, 21, 112–126. [Google Scholar]
- Hu, D.; Chen, Z.; Yang, W.; Zhu, T.; Ke, Y. Partial Discharge Pattern Recognition of GIS Based on CBAM-ResNet. In Proceedings of the 2022 4th International Conference on Robotics, Intelligent Control and Artificial Intelligence, Dongguan, China, 16–18 December 2022; pp. 548–552. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; Volume 61, pp. 10012–10022. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
Method | Data Type | Acc (%) |
---|---|---|
BPNN [42] | PRPD | 73.3 |
BPNN(PCA) [43] | PRPD | 78.1 |
FL [44] | PRPD | 79.7 |
GA-SVM [45] | PRPD | 80.2 |
CNN-LSTM [46] | PRPD + PRPS | 78.7 |
DCGAN-YOLOv5 [47] | PRPD | 83.2 |
CBAM-Resnet [48] | PRPD | 81.3 |
PMSNet (ours) | PRPD | 85.2 |
Pyramid Scheme | Number of DSFBs | Accuracy (%) |
---|---|---|
4 | 0 | 80.2 |
4 | 3 | 82.2 |
5 | 0 | 81.8 |
5 | 4 | 85.1 |
6 | 0 | 82.8 |
6 | 5 | 81.3 |
Epochs | cls_token | F-Collect | Average | Accuracy (%) |
---|---|---|---|---|
50 | ✓ | × | × | 79.8 |
50 | × | ✓ | × | 79.3 |
50 | × | × | ✓ | 78.1 |
100 | ✓ | × | × | 81.0 |
100 | × | ✓ | × | 85.4 |
100 | × | × | ✓ | 80.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Liu, J.; Zhu, K.; Xie, Q.; Liu, H. PMSNet: Multiscale Partial-Discharge Signal Feature Recognition Model via a Spatial Interaction Attention Mechanism. Sensors 2024, 24, 3342. https://doi.org/10.3390/s24113342
Deng Y, Liu J, Zhu K, Xie Q, Liu H. PMSNet: Multiscale Partial-Discharge Signal Feature Recognition Model via a Spatial Interaction Attention Mechanism. Sensors. 2024; 24(11):3342. https://doi.org/10.3390/s24113342
Chicago/Turabian StyleDeng, Yi, Jiazheng Liu, Kuihu Zhu, Quan Xie, and Hai Liu. 2024. "PMSNet: Multiscale Partial-Discharge Signal Feature Recognition Model via a Spatial Interaction Attention Mechanism" Sensors 24, no. 11: 3342. https://doi.org/10.3390/s24113342
APA StyleDeng, Y., Liu, J., Zhu, K., Xie, Q., & Liu, H. (2024). PMSNet: Multiscale Partial-Discharge Signal Feature Recognition Model via a Spatial Interaction Attention Mechanism. Sensors, 24(11), 3342. https://doi.org/10.3390/s24113342