Directivity and Excitability of Ultrasonic Shear Waves Using Piezoceramic Transducers—Numerical Modeling and Experimental Investigations
Abstract
:1. Introduction
2. Shear Horizontal Waves
3. Piezoceramic Shear Wave Actuator and Wave Propagation Modeling
3.1. Piezoelectric Equations—Theoretical Background
3.2. Piezoceramic Actuator Finite-Element Model
3.3. Analysis of Excitation Directivity and Excitability
4. Numerical Simulation Results
4.1. Excitation Directivity
4.2. Excitability
5. Experimental Tests
5.1. Experimental Arrangements
5.2. Experimental Results
5.2.1. Transducer Directivity
5.2.2. Transducer Excitability
5.2.3. Directivity Analysis near the Resonance Frequency of the Transducer
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Staszewski, W.J. Structural health monitoring using guided ultrasonic waves. In Advances in Smart Technologies in Structural Engineering; Holnicki-Szulc, J., Mota Soares, C.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 117–162. [Google Scholar]
- Croxford, A.J.; Wilcox, P.D.; Drinkwater, B.W.; Konstantinidis, G. Strategies for guided-wave structural health monitoring. Proc. R. Soc. 2007, 463, 2961–2981. [Google Scholar] [CrossRef]
- Raghavan, A.; Cesnik, C. Review of guided-wave structural health monitoring. Shock Vib. Dig. 2007, 39, 91–114. [Google Scholar] [CrossRef]
- Castaigns, M. SH ultrasonic guided waves for the evaluation of interfacial adhesion. Ultrasonics 2014, 54, 1760–1775. [Google Scholar]
- Lissenden, C.; Liu, Y.; Rose, J. Use of non-linear ultrasonic guided waves for early damage detection. Insight NDT Cond. Monit. 2015, 57, 4. [Google Scholar] [CrossRef]
- Manogharan, P.; Yu, X.; Fan, Z.; Rajagopal, P. Interaction of shear horizontal bend (SHb) guided mode with defects. NDT E Int. 2015, 75, 39–47. [Google Scholar] [CrossRef]
- Lissenden, C.J. Nonlinear ultrasonic guided waves—Principles for nondestructive evaluation. J. Appl. Phys. 2021, 129, 021101. [Google Scholar] [CrossRef]
- Osika, M.; Ziaja-Sujdak, A.; Radecki, R.; Cheng, L.; Staszewski, W.J. Nonlinear modes in shear horizontal wave propagation—Analytical and numerical analysis. J. Sound Vib. 2022, 540, 117247. [Google Scholar] [CrossRef]
- Osika, M.; Ziaja-Sujdak, A.; Radecki, R.; Staszewski, W.J. The Luxembourg-Gorky effect for elastic shear horizontal guided waves—Analytical and numerical modeling. Int. J. Eng. Sci. 2023, 193, 103933. [Google Scholar] [CrossRef]
- Miao, H.; Li, F. Shear horizontal wave transducers for structural health monitoring and nondestructive testing: A review. Ultrasonics 2021, 114, 106355. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.B. Physical principles of measurements with EMAT transducers. Phys. Acoust. 1990, 19, 157–200. [Google Scholar]
- Wen, F.; Shan, S.; Radecki, R.; Staszewski, W.J.; Cheng, L. Shear-lag modeling of surface-bonded magnetostrictive transducers for shear horizontal wave generation in a non-ferromagnetic plate. Smart Mater. Struct. 2021, 30, 035026. [Google Scholar] [CrossRef]
- Rajagopal, P.; Lowe, M.S.L. Short range scattering of the fundamental shear horizontal guided wave mode normally incident at a through-thickness crack in an isotropic plate. J. Acoust. Soc. Am. 2007, 122, 1287–1302. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Brousseau, E.; Bowen, C. Modeling of a shear-type piezoelectric actuator for AFM-based vibration-assisted nanomachining. Int. J. Mech. Scienc. 2023, 243, 108048. [Google Scholar] [CrossRef]
- Kamal, A.; Giurgiutiu, V. Shear horizontal wave excitation and reception with shear horizontal piezoelectric wafer active sensor (SH-PWAS), Smart. Mater. Struct. 2014, 23, 085019. [Google Scholar]
- Köhler, B.; Gaul, T.; Lieske, U.; Schubert, F. Shear horizontal piezoelectric fiber patch transducers (SH-PFP) for guided elastic wave applications. NDT E Int. 2016, 82, 1–12. [Google Scholar] [CrossRef]
- Miao, H.; Dong, S.; Li, F. Excitation of fundamental shear horizontal wave by using face-shear (d36) piezoelectric ceramics. J. App. Phys. 2016, 119, 17410. [Google Scholar] [CrossRef]
- Huan, Q.; Miao, H.; Li, F. A nearly perfect omnidirectional shear-horizontal (SH) wave transducer based on a thickness poled, thickness-shear (d15) piezoelectric ring. Smart Mat. Struct. 2017, 26, 08LT01. [Google Scholar] [CrossRef]
- Boivin, G.; Viens, M. Development of a low frequency shear horizontal piezoelectric transducer for the generation of plane SH waves. AIP Conf. Proc. 2016, 1706, 030019. [Google Scholar]
- Boivin, G.; Viens, M.; Belanger, P. Plane wave SH0 piezoceramic transduction optimized using geometrical parameters. Sensors 2018, 18, 542. [Google Scholar] [CrossRef]
- Huan, Q.; Chen, M.; Li, F. A Comparative study of three types shear mode piezoelectric wafers in shear horizontal wave generation and reception. Sensors 2018, 18, 2681. [Google Scholar] [CrossRef] [PubMed]
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Dahiya, R.S.; Valle, M. Robotic Tactile Sensing—Technologies and System; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- STEMiNC, Piezo Material Properties. Available online: https://www.steminc.com/piezo/PZ_property.asp (accessed on 20 March 2024).
Excitation Frequency [kHz] | First Criterion | Second Criterion |
---|---|---|
162.5 | X | X |
189.5 | ✓ | X |
378.5 | X | ✓ |
454.5 | X | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksiewicz-Drab, E.; Ziaja-Sujdak, A.; Radecki, R.; Staszewski, W.J. Directivity and Excitability of Ultrasonic Shear Waves Using Piezoceramic Transducers—Numerical Modeling and Experimental Investigations. Sensors 2024, 24, 3462. https://doi.org/10.3390/s24113462
Aleksiewicz-Drab E, Ziaja-Sujdak A, Radecki R, Staszewski WJ. Directivity and Excitability of Ultrasonic Shear Waves Using Piezoceramic Transducers—Numerical Modeling and Experimental Investigations. Sensors. 2024; 24(11):3462. https://doi.org/10.3390/s24113462
Chicago/Turabian StyleAleksiewicz-Drab, Emil, Aleksandra Ziaja-Sujdak, Rafał Radecki, and Wiesław J. Staszewski. 2024. "Directivity and Excitability of Ultrasonic Shear Waves Using Piezoceramic Transducers—Numerical Modeling and Experimental Investigations" Sensors 24, no. 11: 3462. https://doi.org/10.3390/s24113462
APA StyleAleksiewicz-Drab, E., Ziaja-Sujdak, A., Radecki, R., & Staszewski, W. J. (2024). Directivity and Excitability of Ultrasonic Shear Waves Using Piezoceramic Transducers—Numerical Modeling and Experimental Investigations. Sensors, 24(11), 3462. https://doi.org/10.3390/s24113462