Development and Validation of Low-Cost Indoor Air Quality Monitoring System for Swine Buildings
Abstract
:1. Introduction
Literature Review
2. Materials and Methods
Site Description
3. The System Design
3.1. System Architecture
3.2. Hardware Implementation
3.3. Software Implementation
4. Results
4.1. Co-Location Test
4.2. System Performance
5. Discussion
5.1. Limitations and Obstacles
5.2. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arulmozhi, E.; Basak, J.K.; Park, J.; Okyere, F.G.; Khan, F.; Lee, Y.; Lee, J.; Lee, D.; Kim, H.T. Impacts of Nipple Drinker Position on Water Intake, Water Wastage and Drinking Duration of Pigs. Turk. J. Vet. Anim. Sci. 2020, 44, 562–572. [Google Scholar] [CrossRef]
- Basak, J.K.; Okyere, F.G.; Arulmozhi, E.; Park, J.; Khan, F.; Kim, H.T. Artificial Neural Networks and Multiple Linear Regression as Potential Methods for Modelling Body Surface Temperature of Pig. J. Appl. Anim. Res. 2020, 48, 207–219. [Google Scholar] [CrossRef]
- Shen, D.; Wu, S.; Li, Z.; Tang, Q.; Dai, P.; Li, Y.; Li, C. Distribution and Physicochemical Properties of Particulate Matter in Swine Confinement Barns. Environ. Pollut. 2019, 250, 746–753. [Google Scholar] [CrossRef]
- Kabelitz, T.; Ammon, C.; Funk, R.; Münch, S.; Biniasch, O.; Nübel, U.; Thiel, N.; Rösler, U.; Siller, P.; Amon, B.; et al. Functional Relationship of Particulate Matter (PM) Emissions, Animal Species, and Moisture Content during Manure Application. Environ. Int. 2020, 143, 105577. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. A Comprehensive Review on Indoor Air Quality Monitoring Systems for Enhanced Public Health. Sustain. Environ. Res. 2020, 30, 6. [Google Scholar] [CrossRef]
- Winkel, A.; Demeyer, P.; Feilberg, A.; Jørgensen, M.; Puterflam, J.; Engel, P. Measurement of Particulate Matter: Recommendations for the VERA Test Protocol on Air Cleaning Technologies; Technical Report; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2014. [Google Scholar]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart Farming IoT Platform Based on Edge and Cloud Computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Zhou, J.; Li, P. Data Communication Mechanism for Greenhouse Environment Monitoring and Control: An Agent-Based IoT System. Inf. Process. Agric. 2020, 7, 444–455. [Google Scholar] [CrossRef]
- Arulmozhi, E.; Moon, B.E.; Basak, J.K.; Sihalath, T.; Park, J.; Kim, H.T. Machine Learning-Based Microclimate Model for Indoor Air Temperature and Relative Humidity Prediction in a Swine Building. Animals 2021, 11, 222. [Google Scholar] [CrossRef]
- Manikonda, A.; Zíková, N.; Hopke, P.K.; Ferro, A.R. Laboratory Assessment of Low-Cost PM Monitors. J. Aerosol Sci. 2016, 102, 29–40. [Google Scholar] [CrossRef]
- Mahajan, S.; Kumar, P. Evaluation of Low-Cost Sensors for Quantitative Personal Exposure Monitoring. Sustain. Cities Soc. 2020, 57, 102076. [Google Scholar] [CrossRef]
- Zauli-Sajani, S.; Marchesi, S.; Pironi, C.; Barbieri, C.; Poluzzi, V.; Colacci, A. Assessment of Air Quality Sensor System Performance after Relocation. Atmos. Pollut. Res. 2021, 12, 282–291. [Google Scholar] [CrossRef]
- Ferdoush, S.; Li, X. Wireless Sensor Network System Design Using Raspberry Pi and Arduino for Environmental Monitoring Applications. Procedia Comput. Sci. 2014, 34, 103–110. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, S.R. Android Based Smart Home System with Control via Bluetooth and Internet Connectivity. In Proceedings of the 18th IEEE International Symposium on Consumer Electronics, Jeju, Republic of Korea, 22–25 June 2014; pp. 1–2. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, G.; Zhao, L.; Yang, G. Multi-Points Indoor Air Quality Monitoring Based on Internet of Things. IEEE Access 2021, 9, 70479–70492. [Google Scholar] [CrossRef]
- Anik, S.M.H.; Gao, X.; Meng, N.; Agee, P.R.; McCoy, A.P. A Cost-Effective, Scalable, and Portable IoT Data Infrastructure for Indoor Environment Sensing. J. Build. Eng. 2022, 49, 104027. [Google Scholar] [CrossRef]
- Madushanki, A.A.R.; Halgamuge, M.N.; Wirasagoda, W.A.H.S.; Syed, A. Adoption of the Internet of Things (IoT) in Agriculture and Smart Farming towards Urban Greening: A Review. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 11–28. [Google Scholar] [CrossRef]
- Raviteja, K.; Supriya, M. Greenhouse Monitoring System Based on Internet of Things BT—International Conference on Communication, Computing and Electronics Systems: Proceedings of ICCCES 2019; Bindhu, V., Chen, J., Tavares, J.M.R.S., Eds.; Springer: Singapore, 2020; pp. 581–591. ISBN 978-981-15-2612-1. [Google Scholar]
- Karthikeyan, P.R.; Chandrasekaran, G.; Kumar, N.S.; Sengottaiyan, E.; Mani, P.; Kalavathi, D.T.; Gowrishankar, V. IoT Based Moisture Control and Temperature Monitoring in Smart Farming. J. Phys. Conf. Ser. 2021, 1964, 062056. [Google Scholar] [CrossRef]
- Chamara, N.; Islam, M.D.; Bai, G.; Shi, Y.; Ge, Y. Ag-IoT for Crop and Environment Monitoring: Past, Present, and Future. Agric. Syst. 2022, 203, 103497. [Google Scholar] [CrossRef]
- Maraveas, C.; Piromalis, D.; Arvanitis, K.G.; Bartzanas, T.; Loukatos, D. Applications of IoT for Optimized Greenhouse Environment and Resources Management. Comput. Electron. Agric. 2022, 198, 106993. [Google Scholar] [CrossRef]
- Hussain, M.; Ghazanfar, F.; Aleem, S.; Hai, M.; Karim, A.; Hussain, K. Design of Low Cost, Energy Efficient, IoT Enabled, Air Quality Monitoring System with Cloud Based Data Logging, Analytics and AI. In Proceedings of the 2020 International Conference on Emerging Trends in Smart Technologies (ICETST 2020), Karachi, Pakistan, 26–27 March 2020; 2020. [Google Scholar] [CrossRef]
- Kiruthika, R.; Umamakeswari, A. Low Cost Pollution Control and Air Quality Monitoring System Using Raspberry Pi for Internet of Things. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 2319–2326. [Google Scholar] [CrossRef]
- Martín-Garín, A.; Millán-García, J.A.; Baïri, A.; Millán-Medel, J.; Sala-Lizarraga, J.M. Environmental Monitoring System Based on an Open Source Platform and the Internet of Things for a Building Energy Retrofit. Autom. Constr. 2018, 87, 201–214. [Google Scholar] [CrossRef]
- Doshi, J.; Patel, T.; Bharti, S.K. Smart Fanning Using IoT, a Solution for Optimally Monitoring Fanning Conditions. Procedia Comput. Sci. 2019, 160, 746–751. [Google Scholar] [CrossRef]
- Chojer, H.; Branco, P.T.B.S.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Sousa, S.I.V. Development of Low-Cost Indoor Air Quality Monitoring Devices: Recent Advancements. Sci. Total Environ. 2020, 727, 138385. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Heydon, J.; Mayfield, M.; Mihaylova, L. Indoor Air Pollution from Residential Stoves: Examining the Flooding of Particulate Matter into Homes during Real-World Use. Atmosphere 2020, 11, 1326. [Google Scholar] [CrossRef]
- Swanljung, M. Building a Raspberry Pi Based Air Quality Measuring Device for Chemistry Education. Int. J. Math. Sci. Technol. Educ. 2022, 7, 44–55. [Google Scholar]
- Neis, P.; Warch, D.; Hoppe, M. Testing and Evaluation of Low-Cost Sensors for Developing Open Smart Campus Systems Based on IoT. Sensors 2023, 23, 8652. [Google Scholar] [CrossRef]
- Vilciu, I.; Enache, B.A.; Seritan, G.C.; Voicila, T.I. An Indoor Air Quality Score Computation and System. In Proceedings of the 2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2023. [Google Scholar] [CrossRef]
- Basak, J.K.; Arulmozhi, E.; Khan, F.; Okyere, F.G.; Park, J.; Kim, H.T. Modeling of Ambient Environment and Thermal Status Relationship of Pig’s Body in a Pig Barn. Indian J. Anim. Res. 2020, 54, 1049–1054. [Google Scholar] [CrossRef]
S.No | Sensor Name | Detectable Parameter | Price in USD |
---|---|---|---|
1 | Raspberry Pi 4 Model B | NA | 35 |
2 | MH-Z19C | CO2 | 10.64 |
3 | Enviro+ | Temperature, pressure, humidity, lux | 58.69 |
4 | PMS5003 | PM1, PM2.5, PM10 |
Pig Barn 1 | Pig Barn 2 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Unit | Mean | SD | Min | 25% | Median | 75% | Max | Mean | SD | Min | 25% | Median | 75% | Max |
Temperature | °C | 24.040 | 6.067 | 7.6 | 20.1 | 25.3 | 29.3 | 34.4 | 24.041 | 6.067 | 7.6 | 20.1 | 25.3 | 29.2 | 34.5 |
Humidity | % | 74.667 | 13.93 | 29 | 65.2 | 75.8 | 84.4 | 99.6 | 74.668 | 13.93 | 29 | 65.2 | 75.8 | 84.4 | 99.4 |
CO2 | Ppm | 586.179 | 187.86 | 400 | 455 | 551 | 651 | 1760 | 586.267 | 188.44 | 400 | 454 | 552 | 651 | 3618 |
Pressure | Pa | 1017.578 | 6.62 | 760 | 1010 | 1020 | 1020 | 1030 | 1017.598 | 6.28 | 760 | 1010 | 1020 | 1020 | 1030 |
Nitrogen dioxide | Ppm | 8.901 | 3.51 | 0 | 6 | 8 | 10 | 37 | 8.898 | 3.51 | 0 | 6 | 8 | 10 | 39 |
Carbon monoxide | Ppm | 195.491 | 77.57 | 9 | 132 | 182 | 244 | 484 | 195.488 | 77.59 | 10 | 132 | 182 | 244 | 475 |
NH3 | Ppm | 16.591 | 10.21 | 0 | 11 | 13 | 18 | 103 | 16.591 | 10.21 | 0 | 11 | 13 | 18 | 102 |
Illuminance | Lux | 28.322 | 35.65 | 2 | 16 | 17 | 19 | 241 | 28.317 | 35.64 | 2 | 16 | 17 | 19 | 250 |
PM1 | μg/m3 | 23.116 | 12.72 | 0 | 15 | 26 | 30 | 60 | 23.117 | 12.72 | 0 | 15 | 26 | 30 | 60 |
PM2.5 | μg/m3 | 34.34 | 21.29 | 0 | 21 | 36 | 42 | 107 | 34.339 | 21.29 | 0 | 21 | 36 | 42 | 107 |
PM10 | μg/m3 | 38.099 | 23.94 | 0 | 23 | 39 | 47 | 125 | 38.099 | 23.94 | 0 | 23 | 39 | 47 | 127 |
Variables | Statistic | p-Value | Significance |
---|---|---|---|
Temperature | −0.0119 | 0.990507 | Not significant |
Humidity | −0.01304 | 0.989599 | Not significant |
CO2 | 0.043688 | 0.965153 | Not significant |
Pressure | −0.07444 | 0.940658 | Not significant |
Oxidized | 0.146776 | 0.883309 | Not significant |
Reduced | 0.03978 | 0.968269 | Not significant |
NH3 | −0.02805 | 0.97762 | Not significant |
Lux | 0.232048 | 0.816501 | Not significant |
PM1 | −0.02035 | 0.983766 | Not significant |
PM2.5 | 0.006698 | 0.994656 | Not significant |
PM10 | −0.02254 | 0.982016 | Not significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arulmozhi, E.; Bhujel, A.; Deb, N.C.; Tamrakar, N.; Kang, M.Y.; Kook, J.; Kang, D.Y.; Seo, E.W.; Kim, H.T. Development and Validation of Low-Cost Indoor Air Quality Monitoring System for Swine Buildings. Sensors 2024, 24, 3468. https://doi.org/10.3390/s24113468
Arulmozhi E, Bhujel A, Deb NC, Tamrakar N, Kang MY, Kook J, Kang DY, Seo EW, Kim HT. Development and Validation of Low-Cost Indoor Air Quality Monitoring System for Swine Buildings. Sensors. 2024; 24(11):3468. https://doi.org/10.3390/s24113468
Chicago/Turabian StyleArulmozhi, Elanchezhian, Anil Bhujel, Nibas Chandra Deb, Niraj Tamrakar, Myeong Yong Kang, Junghoo Kook, Dae Yeong Kang, Eun Wan Seo, and Hyeon Tae Kim. 2024. "Development and Validation of Low-Cost Indoor Air Quality Monitoring System for Swine Buildings" Sensors 24, no. 11: 3468. https://doi.org/10.3390/s24113468
APA StyleArulmozhi, E., Bhujel, A., Deb, N. C., Tamrakar, N., Kang, M. Y., Kook, J., Kang, D. Y., Seo, E. W., & Kim, H. T. (2024). Development and Validation of Low-Cost Indoor Air Quality Monitoring System for Swine Buildings. Sensors, 24(11), 3468. https://doi.org/10.3390/s24113468