Combining Sound and Deep Neural Networks for the Measurement of Jump Height in Sports Science
Abstract
:1. Introduction
2. Methodology and Preprocessing
2.1. Experimental Procedure
2.2. Audio Signal Characteristics of the Jumps
2.3. Addition of Background Noise and Interferences
2.4. Feature Extraction
2.5. Data Preparation and Labeling
3. Event Detection Using CNN
3.1. Introduction to CNNs
3.2. CNN Architecture
3.3. Model Training
3.4. Training Results
3.5. Time Flight Extraction
4. Experiments and Algorithm Comparison
4.1. Introduction of the Experiments
4.2. Analysis of Landing False Positives
4.3. Analysis of the Flight Time
4.4. Analysis of Synthetically Created Jumps
4.5. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buchheit, M.; Spencer, M.; Ahmaidi, S. Reliability, Usefulness, and Validity of a Repeated Sprint and Jump Ability Test. Int. J. Sports Physiol. Perform. 2010, 5, 3–17. [Google Scholar] [CrossRef]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front. Physiol. 2019, 10, 450076. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A Simple Method for Measurement of Mechanical Power in Jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Conceição, F.; Lewis, M.; Lopes, H.; Fonseca, E.M.M. An Evaluation of the Accuracy and Precision of Jump Height Measurements Using Different Technologies and Analytical Methods. Appl. Sci. 2022, 12, 511. [Google Scholar] [CrossRef]
- Barris, S.; Button, C. A Review of Vision-Based Motion Analysis in Sport. Sports Med. 2008, 38, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Turner, A.; Comfort, P.; Harry, J.R.; McMahon, J.J.; Chavda, S.; Bishop, C. A Systematic Review of the Different Calculation Methods for Measuring Jump Height During the Countermovement and Drop Jump Tests. Sports Med. 2023, 53, 1055–1072. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamashita, D.; Murata, M.; Inaba, Y. Effect of Landing Posture on Jump Height Calculated from Flight Time. Appl. Sci. 2020, 10, 776. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Morris, J.; Folland, J.P. Validity of Vertical Jump Measurement Devices. J. Sports Sci. 2012, 30, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Pueo, B.; Lipinska, P.; Jiménez-Olmedo, J.M.; Zmijewski, P.; Hopkins, W.G. Accuracy of Jump-Mat Systems for Measuring Jump Height. Int. J. Sports Physiol. Perform. 2017, 12, 959–963. [Google Scholar] [CrossRef]
- García-López, J.; Morante, J.C.; Ogueta-Alday, A.; Rodríguez-Marroyo, J.A. The Type of Mat (Contact vs. Photocell) Affects Vertical Jump Height Estimated from Flight Time. J. Strength. Cond. Res. 2013, 27, 1162–1167. [Google Scholar] [CrossRef]
- Castagna, C.; Ganzetti, M.; Ditroilo, M.; Giovannelli, M.; Rocchetti, A.; Mazi, V. Concurrent Validity of Vertical Jump Performance Assessment Systems. J. Strength Cond. Res. 2013, 27, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernandez, C.; Glaister, M.; Lockey, R.A. The Validity and Reliability of an IPhone App for Measuring Vertical Jump Performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef]
- Linthorne, N.P. Analysis of Standing Vertical Jumps Using a Force Platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef]
- Pueo, B. High Speed Cameras for Motion Analysis in Sports Science. J. Hum. Sport Exerc. 2016, 11, 53–73. [Google Scholar] [CrossRef]
- Bartlett, J.W.; Frost, C. Reliability, Repeatability and Reproducibility: Analysis of Measurement Errors in Continuous Variables. Ultrasound Obstet. Gynecol. 2008, 31, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Pueo, B.; Lopez, J.J.; Jimenez-Olmedo, J.M. Audio-Based System for Automatic Measurement of Jump Height in Sports Science. Sensors 2019, 19, 2543. [Google Scholar] [CrossRef] [PubMed]
- Pueo, B.; Penichet-Tomas, A.; Jimenez-Olmedo, J.M. Reliability and Validity of the Chronojump Open-Source Jump Mat System. Biol. Sport. 2020, 37, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Hershey, S.; Chaudhuri, S.; Ellis, D.P.W.; Gemmeke, J.F.; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.; Saurous, R.A.; Seybold, B.; et al. CNN Architectures for Large-Scale Audio Classification. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 5–9 March 2017. [Google Scholar]
- Zhang, S.; Zhang, S.; Huang, T.; Gao, W. Speech Emotion Recognition Using Deep Convolutional Neural Network and Discriminant Temporal Pyramid Matching. IEEE Trans. Multimed. 2018, 20, 1576–1590. [Google Scholar] [CrossRef]
- Tang, G.; Liang, R.; Xie, Y.; Bao, Y.; Wang, S. Improved Convolutional Neural Networks for Acoustic Event Classification. Multimed. Tools Appl. 2019, 78, 15801–15816. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the Computer Vision—ECCV 2014, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Zurich, Switzerland, 6–12 September 2014; Volume 8689. [Google Scholar]
- Piczak, K.J. Environmental Sound Classification with Convolutional Neural Networks. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, Boston, MA, USA, 17–20 September 2015; Volume 2015. [Google Scholar]
- Kong, Q.; Xu, Y.; Sobieraj, I.; Wang, W.; Plumbley, M.D. Sound Event Detection and Time-Frequency Segmentation from Weakly Labelled Data. IEEE/ACM Trans. Audio Speech Lang. Process 2019, 27, 777–787. [Google Scholar] [CrossRef]
- Krichen, M.; Mihoub, A.; Alzahrani, M.Y.; Adoni, W.Y.H.; Nahhal, T. Are Formal Methods Applicable To Machine Learning And Artificial Intelligence? In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies, SMARTTECH, Riyadh, Saudi Arabia, 9–11 May 2022. [Google Scholar]
- Raman, R.; Gupta, N.; Jeppu, Y. Framework for Formal Verification of Machine Learning Based Complex System-of-Systems. Insight 2023, 26, 91–102. [Google Scholar] [CrossRef]
K-Fold | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|
1 | 0.925 | 0.974 | 0.949 |
2 | 0.951 | 0.975 | 0.963 |
3 | 0.999 | 0.891 | 0.943 |
4 | 1.000 | 1.000 | 1.000 |
5 | 0.974 | 0.974 | 0.974 |
Mean | 0.970 | 0.963 | 0.966 |
K-Fold | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|
1 | 0.974 | 0.974 | 0.974 |
2 | 0.951 | 0.951 | 0.951 |
3 | 0.960 | 0.904 | 0.931 |
4 | 0.965 | 0.980 | 0.971 |
5 | 0.904 | 0.999 | 0.949 |
Mean | 0.951 | 0.962 | 0.956 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banchero, L.; Lopez, J.J.; Pueo, B.; Jimenez-Olmedo, J.M. Combining Sound and Deep Neural Networks for the Measurement of Jump Height in Sports Science. Sensors 2024, 24, 3505. https://doi.org/10.3390/s24113505
Banchero L, Lopez JJ, Pueo B, Jimenez-Olmedo JM. Combining Sound and Deep Neural Networks for the Measurement of Jump Height in Sports Science. Sensors. 2024; 24(11):3505. https://doi.org/10.3390/s24113505
Chicago/Turabian StyleBanchero, Lucas, Jose J. Lopez, Basilio Pueo, and Jose M. Jimenez-Olmedo. 2024. "Combining Sound and Deep Neural Networks for the Measurement of Jump Height in Sports Science" Sensors 24, no. 11: 3505. https://doi.org/10.3390/s24113505
APA StyleBanchero, L., Lopez, J. J., Pueo, B., & Jimenez-Olmedo, J. M. (2024). Combining Sound and Deep Neural Networks for the Measurement of Jump Height in Sports Science. Sensors, 24(11), 3505. https://doi.org/10.3390/s24113505