Technological Features of Immersive Virtual Reality Systems for Upper Limb Stroke Rehabilitation: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Quality Assessment
3.2. Patients and Interventions
3.3. Country: IVR Games Developed and Validated
3.4. Software
3.5. Hardware
3.6. Technical Evaluation
4. Discussion
4.1. Game Engine and Programming Language
4.2. Methodologies Adopted in IVR Games
4.3. Types of IVR Headsets
4.4. Platform for Implement IVR for ULSR
4.5. IVR Game Types
4.6. IVR Game Evaluation
4.7. Technical Implications
4.8. Clinical Implications of Technical Means and Metrics in IVR
4.9. Current Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Vahdati, S.S.; Ala, A.; Hejazian, S.; Hokmabadi, E.S.; Majidi, T.; Ghanbari, F.; Hosseinzadeh, N. Factors Affecting Complications and Mortality of Stroke Patients in Stroke Care Unit. Erciyes Med. J. 2022, 44, 136–141. [Google Scholar] [CrossRef]
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V. Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Pollock, A.; Farmer, S.E.; Brady, M.C.; Langhorne, P.; Mead, G.E.; Mehrholz, J.; Van Wijck, F. Interventions for Improving Upper Limb Function after Stroke. Cochrane Database Syst. Rev. 2014, 11, CD010820. [Google Scholar] [CrossRef] [PubMed]
- Phelan, I.; Carrion-Plaza, A.; Furness, P.J.; Dimitri, P. Home-Based Immersive Virtual Reality Physical Rehabilitation in Paediatric Patients for Upper Limb Motor Impairment: A Feasibility Study. Virtual Real. 2023, 27, 3505–3520. [Google Scholar] [CrossRef]
- Rehabilitation. Available online: https://www.who.int/news-room/fact-sheets/detail/rehabilitation (accessed on 29 March 2024).
- Bonnechère, B.; Timmermans, A.; Michiels, S. Current Technology Developments Can Improve the Quality of Research and Level of Evidence for Rehabilitation Interventions: A Narrative Review. Sensors 2023, 23, 875. [Google Scholar] [CrossRef] [PubMed]
- Helou, S.; Khalil, N.; Daou, M.; El Helou, E. Virtual Reality for Healthcare: A Scoping Review of Commercially Available Applications for Head-Mounted Displays. Digit. Health 2023, 9, 20552076231178619. [Google Scholar] [CrossRef] [PubMed]
- Abbas, J.R.; O’Connor, A.; Ganapathy, E.; Isba, R.; Payton, A.; McGrath, B.; Tolley, N.; Bruce, I.A. What Is Virtual Reality? A Healthcare-Focused Systematic Review of Definitions. Health Policy Technol. 2023, 12, 100741. [Google Scholar] [CrossRef]
- Cortés-Pérez, I.; Zagalaz-Anula, N.; Ibancos-Losada, M.d.R.; Nieto-Escámez, F.A.; Obrero-Gaitán, E.; Osuna-Pérez, M.C. Virtual Reality-Based Therapy Reduces the Disabling Impact of Fibromyalgia Syndrome in Women: Systematic Review with Meta-Analysis of Randomized Controlled Trials. J. Pers. Med. 2021, 11, 1167. [Google Scholar] [CrossRef]
- Gonzalez Garza, I.A. GPS-MIV: The General Purpose System for Multi-Display Interactive Visualization. Master’s Thesis, University of Texas-Pan American, Edinburg, TX, USA, 2014. [Google Scholar]
- Perez-Marcos, D. Virtual Reality Experiences, Embodiment, Videogames and Their Dimensions in Neurorehabilitation. J. Neuroeng. Rehabil. 2018, 15, 113. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Zhang, J.; Chen, W. Virtual Reality Training System for Upper Limb Rehabilitation. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 1969–1974. [Google Scholar]
- Zuki, F.S.M.; Merienne, F.; Sulaiman, S.; Ricca, A.; Rambli, D.R.A.; Saad, M.N.M. Gamification, Sensory Feedback, Adaptive Function on Virtual Reality Rehabilitation: A Brief Review. In Proceedings of the 2022 International Conference on Digital Transformation and Intelligence (ICDI), Kuching, Malaysia, 1–2 December 2022; pp. 330–335. [Google Scholar]
- Chen, J.; Or, C.K.; Chen, T. Effectiveness of Using Virtual Reality-Supported Exercise Therapy for Upper Extremity Motor Rehabilitation in Patients With Stroke: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Med. Internet Res. 2022, 24, e24111. [Google Scholar] [CrossRef] [PubMed]
- Bedar, K.; Bubanovich, C.; Rosemore, J.; Radford, K.; Taylor, K.L. Virtual Reality Intervention and Its Impact on Upper Extremity Function in the Stroke Population: A Scoping Review. Games Health J. 2023, 12, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, J.A.; Fernandes, C.A.; Casseb, R.F.; Castellano, G. Effects of Virtual Reality-Based Motor Rehabilitation: A Systematic Review of fMRI Studies. J. Neural Eng. 2022, 19. [Google Scholar] [CrossRef] [PubMed]
- Lima Rebêlo, F.; de Souza Silva, L.F.; Doná, F.; Sales Barreto, A.; de Souza Siqueira Quintans, J. Immersive Virtual Reality Is Effective in the Rehabilitation of Older Adults with Balance Disorders: A Randomized Clinical Trial. Exp. Gerontol. 2021, 149, 111308. [Google Scholar] [CrossRef] [PubMed]
- Demir, O.; Gokbel, T.; Baydemir, C.; Dursun, E. Effects of Immersive Virtual Reality-Based Movement Therapy on Upper Extremity Functions and Cognitive Functions in Stroke Patients. Int. J. Health Stud. 2024, 9, 37–42. [Google Scholar] [CrossRef]
- Lee, G.-H. Improving Cognition and Motor Performances Through Fully Immersive Virtual Reality Using on a Head Mount Device Among Patients with Chronic Stroke. APJCRI 2023, 9, 579–588. [Google Scholar] [CrossRef]
- Elor, A.; Powell, M.; Mahmoodi, E.; Teodorescu, M.; Kurniawan, S. Gaming beyond the Novelty Effect of Immersive Virtual Reality for Physical Rehabilitation. IEEE Trans. Games 2022, 14, 107–115. [Google Scholar] [CrossRef]
- Altukhaim, S.; Sakabe, N.; Nagaratnam, K.; Mannava, N.; Kondo, T.; Hayashi, Y. Immersive Virtual Reality Enhanced Reinforcement Induced Physical Therapy (EVEREST) A Pilot Case–Control Study of Virtual Reality-Enhanced Upper Limb Rehabilitation for Stroke Survivors. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Liu, Z.; He, Z.; Yuan, J.; Lin, H.; Fu, C.; Zhang, Y.; Wang, N.; Li, G.; Bu, J.; Chen, M.; et al. Application of Immersive Virtual-Reality-Based Puzzle Games in Elderly Patients with Post-Stroke Cognitive Impairment: A Pilot Study. Brain Sci. 2023, 13, 79. [Google Scholar] [CrossRef]
- Rutkowski, S.; Kiper, P.; Cacciante, L.; Cieslik, B.; Mazurek, J.; Turolla, A.; Szczepanska-Gieracha, J. Use of Virtual Reality-Based Training in Different Fields of Rehabilitation: A Systematic Review and Meta-Analysis. J. Rehabil. Med. 2020, 52, 1–16. [Google Scholar] [CrossRef]
- Bonnechère, B.; Jansen, B.; Haack, I.; Omelina, L.; Feipel, V.; Van Sint Jan, S.; Pandolfo, M. Automated Functional Upper Limb Evaluation of Patients with Friedreich Ataxia Using Serious Games Rehabilitation Exercises. J. NeuroEng. Rehabil. 2018, 15, 87. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, F.; Farhane-Medina, N.Z.; Adorni, R.; Steca, P.; Giardini, A.; D’Addario, M.; Pierobon, A. Combining Robot-Assisted Therapy with Virtual Reality or Using It Alone? A Systematic Review on Health-Related Quality of Life in Neurological Patients. Health Qual. Life Outcomes 2023, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [CrossRef] [PubMed]
- Wagner, A.K. TBI Translational Rehabilitation Research in the 21st Century: Exploring a Rehabilomics Research Model. Eur. J. Phys. Rehabil. Med. 2010, 46, 549–556. [Google Scholar] [PubMed]
- Wagner, A.K. A Rehabilomics Framework for Personalized and Translational Rehabilitation Research and Care for Individuals with Disabilities: Perspectives and Considerations for Spinal Cord Injury. J. Spinal Cord Med. 2014, 37, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Pielage, H.; Zekveld, A.A.; van de Ven, S.; Kramer, S.E.; Naber, M. The Pupil near Response Is Short Lasting and Intact in Virtual Reality Head Mounted Displays. J. Eye Mov. Res. 2022, 15, 1–11. [Google Scholar] [CrossRef]
- OSF. Development Tools and Validation Methods of Immersive Virtual Reality for Upper Limb Stroke Rehabilitation: A Systematic Review. Available online: https://osf.io/6g27u (accessed on 4 May 2024).
- Liberati, A. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Ann. Intern. Med. 2009, 151, W. [Google Scholar] [CrossRef]
- Salanti, G.; Ades, A.E.; Ioannidis, J.P. Graphical Methods and Numerical Summaries for Presenting Results from Multiple-Treatment Meta-Analysis: An Overview and Tutorial. J. Clin. Epidemiol. 2011, 64, 163–171. [Google Scholar] [CrossRef]
- Long, H.A.; French, D.P.; Brooks, J.M. Optimising the Value of the Critical Appraisal Skills Programme (CASP) Tool for Quality Appraisal in Qualitative Evidence Synthesis. Res. Methods Med. Health Sci. 2020, 1, 31–42. [Google Scholar] [CrossRef]
- Burton, Q.; Lejeune, T.; Dehem, S.; Lebrun, N.; Ajana, K.; Edwards, M.G.; Everard, G. Performing a Shortened Version of the Action Research Arm Test in Immersive Virtual Reality to Assess Post-Stroke Upper Limb Activity. J. NeuroEngineering Rehabil. 2022, 19, 133. [Google Scholar] [CrossRef]
- Chen, J.; Or, C.K.; Li, Z.; Yeung, E.H.K.; Zhou, Y.; Hao, T. Effectiveness, Safety and Patients’ Perceptions of an Immersive Virtual Reality–Based Exercise System for Poststroke Upper Limb Motor Rehabilitation: A Proof-of-Concept and Feasibility Randomized Controlled Trial. Digit. Health 2023, 9, 20552076231203599. [Google Scholar] [CrossRef] [PubMed]
- Álvarez De La Campa Crespo, M.; Donegan, T.; Amestoy-Alonso, B.; Just, A.; Combalía, A.; Sanchez-Vives, M.V. Virtual Embodiment for Improving Range of Motion in Patients with Movement-Related Shoulder Pain: An Experimental Study. J. Orthop. Surg. Res. 2023, 18, 729. [Google Scholar] [CrossRef] [PubMed]
- Elor, A.; Teodorescu, M.; Kurniawan, S. Project Star Catcher: A Novel Immersive Virtual Reality Experience for Upper Limb Rehabilitation. ACM Trans. Access. Comput. 2018, 11, 1–25. [Google Scholar] [CrossRef]
- Everard, G.; Otmane-Tolba, Y.; Rosselli, Z.; Pellissier, T.; Ajana, K.; Dehem, S.; Auvinet, E.; Edwards, M.G.; Lebleu, J.; Lejeune, T. Concurrent Validity of an Immersive Virtual Reality Version of the Box and Block Test to Assess Manual Dexterity among Patients with Stroke. J. NeuroEng. Rehabil. 2022, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Fregna, G.; Schincaglia, N.; Baroni, A.; Straudi, S.; Casile, A. A Novel Immersive Virtual Reality Environment for the Motor Rehabilitation of Stroke Patients: A Feasibility Study. Front. Robot. AI 2022, 9, 906424. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-Y.; Chiang, W.-C.; Yeh, Y.-C.; Fan, S.-C.; Yang, W.-H.; Kuo, H.-C.; Li, P.-C. Effects of Virtual Reality-Based Motor Control Training on Inflammation, Oxidative Stress, Neuroplasticity and Upper Limb Motor Function in Patients with Chronic Stroke: A Randomized Controlled Trial. BMC Neurol. 2022, 22, 21. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Jiang, X.; Jin, Y.; Wu, B.; Vigotsky, A.; Fan, L.; Gu, P.; Tu, W.; Huang, L.; Jiang, S. Immersive Virtual Reality-Based Rehabilitation for Subacute Stroke: A Randomized Controlled Trial. J. Neurol. 2023, 271, 1256–1266. [Google Scholar] [CrossRef]
- Hsu, H.-Y.; Kuo, L.-C.; Lin, Y.-C.; Su, F.-C.; Yang, T.-H.; Lin, C.-W. Effects of a Virtual Reality–Based Mirror Therapy Program on Improving Sensorimotor Function of Hands in Chronic Stroke Patients: A Randomized Controlled Trial. Neurorehabil. Neural Repair. 2022, 36, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Juan, M.-C.; Elexpuru, J.; Dias, P.; Santos, B.S.; Amorim, P. Immersive Virtual Reality for Upper Limb Rehabilitation: Comparing Hand and Controller Interaction. Virtual Real. 2023, 27, 1157–1171. [Google Scholar] [CrossRef]
- Kamatchi, K.; Paul, J.; Alagesan, J.; Harikrishnan, N. The Impact of Virtual Reality on Upper Extremity Function In Stroke Patients: A Pilot Study. J. Popul. Ther. Clin. Pharmacol. 2023, 30, 312–320. [Google Scholar]
- Lee, S.H.; Jung, H.; Yun, S.J.; Oh, B.; Seo, H.G. Upper Extremity Rehabilitation Using Fully Immersive Virtual Reality Games with a Head Mount Display: A Feasibility Study. PM R 2020, 12, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.Y.; Hwang, D.M.; Cho, K.H.; Moon, C.W.; Ahn, S.Y. A Fully Immersive Virtual Reality Method for Upper Limb Rehabilitation in Spinal Cord Injury. Ann. Rehabil. Med. 2020, 44, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-W.; Kuo, L.-C.; Lin, Y.-C.; Su, F.-C.; Lin, Y.-A.; Hsu, H.-Y. Development and Testing of a Virtual Reality Mirror Therapy System for the Sensorimotor Performance of Upper Extremity: A Pilot Randomized Controlled Trial. IEEE Access 2021, 9, 14725–14734. [Google Scholar] [CrossRef]
- Matamala-Gomez, M.; Slater, M.; Sanchez-Vives, M.V. Impact of Virtual Embodiment and Exercises on Functional Ability and Range of Motion in Orthopedic Rehabilitation. Sci. Rep. 2022, 12, 5046. [Google Scholar] [CrossRef] [PubMed]
- Mekbib, D.B.; Debeli, D.K.; Zhang, L.; Fang, S.; Shao, Y.; Yang, W.; Han, J.; Jiang, H.; Zhu, J.; Zhao, Z.; et al. A Novel Fully Immersive Virtual Reality Environment for Upper Extremity Rehabilitation in Patients with Stroke. Ann. N. Y. Acad. Sci. 2021, 1493, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Ögün, M.N.; Kurul, R.; Yaşar, M.F.; Turkoglu, S.A.; Avci, Ş.; Yildiz, N. Effect of Leap Motion-Based 3D Immersive Virtual Reality Usage on Upper Extremity Function in Ischemic Stroke Patients. Arq. Neuropsiquiatr. 2019, 77, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Kim, J.; Kim, M. Efficacy of Virtual Reality Therapy in Ideomotor Apraxia Rehabilitation: A Case Report. Medicine 2021, 100, e26657. [Google Scholar] [CrossRef] [PubMed]
- Phelan, I.; Furness, P.J.; Dunn, H.D.; Carrion-Plaza, A.; Matsangidou, M.; Dimitri, P.; Lindley, S. Immersive Virtual Reality in Children with Upper Limb Injuries: Findings from a Feasibility Study. J. Pediatr. Rehabil. Med. 2021, 14, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Sip, P.; Kozłowska, M.; Czysz, D.; Daroszewski, P.; Lisiński, P. Perspectives of Motor Functional Upper Extremity Recovery with the Use of Immersive Virtual Reality in Stroke Patients. Sensors 2023, 23, 712. [Google Scholar] [CrossRef]
- Song, Y.-H.; Lee, H.-M. Effect of Immersive Virtual Reality-Based Bilateral Arm Training in Patients with Chronic Stroke. Brain Sci. 2021, 11, 1032. [Google Scholar] [CrossRef]
- Tokgöz, P.; Wähnert, D.; Elsner, A.; Schack, T.; Cienfuegos Tellez, M.A.; Conrad, J.; Vordemvenne, T.; Dockweiler, C. Virtual Reality for Upper Extremity Rehabilitation—A Prospective Pilot Study. Healthcare 2023, 11, 1498. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.E.; Fowler, C.A.; Delikat, J.; Kaplan, H.; Merzier, M.M.; Schlesinger, M.R.; Litzenberger, S.; Marszalek, J.M.; Scott, S.; Winkler, S.L. Immersive Virtual Reality to Improve Outcomes in Veterans with Stroke: Protocol for a Single-Arm Pilot Study. JMIR Res. Protoc. 2021, 10, e26133. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wu, W.; Chen, X.; Wu, B.; Wu, L.; Huang, X.; Jiang, S.; Huang, L. Evaluating the Effect and Mechanism of Upper Limb Motor Function Recovery Induced by Immersive Virtual-Reality-Based Rehabilitation for Subacute Stroke Subjects: Study Protocol for a Randomized Controlled Trial. Trials 2019, 20, 104. [Google Scholar] [CrossRef] [PubMed]
- Tastan, H.; Tuker, C.; Tong, T. Using Handheld User Interface and Direct Manipulation for Architectural Modeling in Immersive Virtual Reality: An Exploratory Study. Comput. Appl. Eng. Educ. 2022, 30, 415–434. [Google Scholar] [CrossRef]
- Durojaye, A.; Kolahdooz, A.; Nawaz, A.; Moshayedi, A.J. Immersive Horizons: Exploring the Transformative Power of Virtual Reality across Economic Sectors. EAI Endorsed Trans. AI Robot. 2023, 2, e6. [Google Scholar] [CrossRef]
- Sweidan, S.Z.; Darabkh, K.A. VREG: A Virtual Reality Educational Game with Arabic Content Using Android Smart Phone. J. Softw. Eng. Appl. 2018, 11, 500–520. [Google Scholar] [CrossRef]
- Akbulut, A.; Güngör, F.; Tarakcı, E.; Çabuk, A.; Aydin, M.A. Immersive Virtual Reality Games for Rehabilitation of Phantom Limb Pain. In Proceedings of the 2019 Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 3–5 October 2019; pp. 1–4. [Google Scholar]
- Birckhead, B.; Khalil, C.; Liu, X.; Conovitz, S.; Rizzo, A.; Danovitch, I.; Bullock, K.; Spiegel, B. Recommendations for Methodology of Virtual Reality Clinical Trials in Health Care by an International Working Group: Iterative Study. JMIR Ment. Health 2019, 6, e11973. [Google Scholar] [CrossRef] [PubMed]
- Kauhanen, O.; Väätäjä, H.; Turunen, M.; Keskinen, T.; Sirkkunen, E.; Uskali, T.; Lindqvist, V.; Kelling, C.; Karhu, J. Assisting Immersive Virtual Reality Development with User Experience Design Approach. In Proceedings of the 21st International Academic Mindtrek Conference, Tampere, Finland, 20 September 2017; ACM: New York, NY, USA, 2017; pp. 127–136. [Google Scholar]
- Wang, A.; Thompson, M.; Roy, D.; Pan, K.; Perry, J.; Tan, P.; Eberhart, R.; Klopfer, E. Iterative User and Expert Feedback in the Design of an Educational Virtual Reality Biology Game. Interact. Learn. Environ. 2022, 30, 677–694. [Google Scholar] [CrossRef]
- Gagnon Shaigetz, V.; Proulx, C.; Cabral, A.; Choudhury, N.; Hewko, M.; Kohlenberg, E.; Segado, M.; Smith, M.S.; Debergue, P. An Immersive and Interactive Platform for Cognitive Assessment and Rehabilitation (bWell): Design and Iterative Development Process. JMIR Rehabil. Assist. Technol. 2021, 8, e26629. [Google Scholar] [CrossRef]
- Makransky, G.; Petersen, G.B.; Klingenberg, S. Can an Immersive Virtual Reality Simulation Increase Students’ Interest and Career Aspirations in Science? Br. J. Educ. Technol. 2020, 51, 2079–2097. [Google Scholar] [CrossRef]
- Mondragón Bernal, I.F.; Lozano-Ramírez, N.E.; Puerto Cortés, J.M.; Valdivia, S.; Muñoz, R.; Aragón, J.; García, R.; Hernández, G. An Immersive Virtual Reality Training Game for Power Substations Evaluated in Terms of Usability and Engagement. Appl. Sci. 2022, 12, 711. [Google Scholar] [CrossRef]
- Paraense, H.; Marques, B.; Amorim, P.; Dias, P.; Santos, B.S. Whac-A-Mole: Exploring Virtual Reality (VR) for Upper-Limb Post-Stroke Physical Rehabilitation Based on Participatory Design and Serious Games. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 12–16 March 2022; pp. 716–717. [Google Scholar]
- Castillo, J.F.V.; Vega, M.F.M.; Cardona, J.E.M.; Lopez, D.; Quiñones, L.; Gallo, O.A.H.; Lopez, J.F. Design of Virtual Reality Exergames for Upper Limb Stroke Rehabilitation Following Iterative Design Methods: Usability Study. JMIR Serious Games 2024, 12, e48900. [Google Scholar] [CrossRef]
- Eisapour, M.; Cao, S.; Domenicucci, L.; Boger, J. Participatory Design of a Virtual Reality Exercise for People with Mild Cognitive Impairment. In Proceedings of the Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–9. [Google Scholar]
- Tao, G.; Garrett, B.; Taverner, T.; Cordingley, E.; Sun, C. Immersive Virtual Reality Health Games: A Narrative Review of Game Design. J. NeuroEng. Rehabil. 2021, 18, 31. [Google Scholar] [CrossRef] [PubMed]
- Angelov, V.; Petkov, E.; Shipkovenski, G.; Kalushkov, T. Modern Virtual Reality Headsets. In Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 26–27 June 2020; pp. 1–5. [Google Scholar]
- Nagta, A.; Sharma, B.; Sheena; Sharma, A. Oculus: A New Dimension to Virtual Reality. In Proceedings of the 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 13–15 December 2022; pp. 1169–1172. [Google Scholar]
- Chaplin, E.; Karatzios, C.; Benaim, C. Clinical Applications of Virtual Reality in Musculoskeletal Rehabilitation: A Scoping Review. Healthcare 2023, 11, 3178. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Karlsen, A.S.T.; Solberg, M.; Hameed, I.A. A Social VR-Based Collaborative Exergame for Rehabilitation: Codesign, Development and User Study. Virtual Real. 2023, 27, 3403–3420. [Google Scholar] [CrossRef] [PubMed]
- Goumopoulos, C.; Drakakis, E.; Gklavakis, D. Feasibility and Acceptance of Augmented and Virtual Reality Exergames to Train Motor and Cognitive Skills of Elderly. Computers 2023, 12, 52. [Google Scholar] [CrossRef]
- Sadek Hosny, Y.S.; Salem, M.A.-M.; Wahby, A. Performance Optimization for Standalone Virtual Reality Headsets. In Proceedings of the 2020 IEEE Graphics and Multimedia (GAME), Kota Kinabalu, Malaysia, 17–19 November 2020; pp. 13–18. [Google Scholar]
- Duval, J.; Thakkar, R.; Du, D.; Chin, K.; Luo, S.; Elor, A.; El-Nasr, M.S.; John, M. Designing Spellcasters from Clinician Perspectives: A Customizable Gesture-Based Immersive Virtual Reality Game for Stroke Rehabilitation. ACM Trans. Access. Comput. 2022, 15, 26. [Google Scholar] [CrossRef]
- Salisbury, J.P.; Aronson, T.M.; Simon, T.J. At-Home Self-Administration of an Immersive Virtual Reality Therapeutic Game for Post-Stroke Upper Limb Rehabilitation. In Proceedings of the Extended Abstracts of the 2020 Annual Symposium on Computer-Human Interaction in Play, Virtual Event, Canada, 2–4 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 114–121. [Google Scholar]
- AlMousa, M.; Al-Khalifa, H.S.; AlSobayel, H. Move-IT: A Virtual Reality Game for Upper Limb Stroke Rehabilitation Patients. In Computers Helping People with Special Needs; Miesenberger, K., Manduchi, R., Covarrubias Rodriguez, M., Peňáz, P., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12376, pp. 184–195. ISBN 978-3-030-58795-6. [Google Scholar]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions without the Presence of Pertinent Adverse Symptomatology. Front. Hum. Neurosci. 2019, 13, 417. [Google Scholar] [CrossRef]
- Kourtesis, P.; Korre, D.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Guidelines for the Development of Immersive Virtual Reality Software for Cognitive Neuroscience and Neuropsychology: The Development of Virtual Reality Everyday Assessment Lab (VR-EAL), a Neuropsychological Test Battery in Immersive Virtual Reality. Front. Comput. Sci. 2020, 1, 497368. [Google Scholar] [CrossRef]
- Alves, S.; Callado, A.; Jucá, P. Evaluation of Graphical User Interfaces Guidelines for Virtual Reality Games. In Proceedings of the 2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), Recife, Brazil, 7 November 2020; pp. 71–79. [Google Scholar]
- Masuch, M.; Röber, N. Game Graphics beyond Realism: Then, Now and Tomorrow. In Proceedings of the Level UP: Digital Games Research Conference, Utrecht, The Netherlands, 4–6 November 2004. [Google Scholar]
- Rogers, K.; Ribeiro, G.; Wehbe, R.R.; Weber, M.; Nacke, L.E. Vanishing Importance: Studying Immersive Effects of Game Audio Perception on Player Experiences in Virtual Reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–13. [Google Scholar]
- Wu, C.-M.; Hsu, C.-W.; Lee, T.-K.; Smith, S. A Virtual Reality Keyboard with Realistic Haptic Feedback in a Fully Immersive Virtual Environment. Virtual Real. 2017, 21, 19–29. [Google Scholar] [CrossRef]
- Gani, A.; Pickering, O.; Ellis, C.; Sabri, O.; Pucher, P. Impact of Haptic Feedback on Surgical Training Outcomes: A Randomised Controlled Trial of Haptic versus Non-Haptic Immersive Virtual Reality Training. Ann. Med. Surg. 2022, 83, 104734. [Google Scholar] [CrossRef] [PubMed]
- Kreimeier, J.; Hammer, S.; Friedmann, D.; Karg, P.; Bühner, C.; Bankel, L.; Götzelmann, T. Evaluation of Different Types of Haptic Feedback Influencing the Task-Based Presence and Performance in Virtual Reality. In Proceedings of the PETRA ‘19: The 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Rhodes, Greece, 5–7 June 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 289–298. [Google Scholar]
- Guillen-Sanz, H.; Checa, D.; Miguel-Alonso, I.; Bustillo, A. A Systematic Review of Wearable Biosensor Usage in Immersive Virtual Reality Experiences. Virtual Real. 2024, 28, 74. [Google Scholar] [CrossRef]
- Powell, M.O.; Elor, A.; Teodorescu, M.; Kurniawan, S. Openbutterfly: Multimodal Rehabilitation Analysis of Immersive Virtual Reality for Physical Therapy. Am. J. Sports Sci. Med. 2020, 8, 23–35. [Google Scholar]
- Bonnechère, B. Integrating Rehabilomics into the Multi-Omics Approach in the Management of Multiple Sclerosis: The Way for Precision Medicine? Genes 2022, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Bodzin, A.; Junior, R.A.; Hammond, T.; Anastasio, D. Investigating Engagement and Flow with a Placed-Based Immersive Virtual Reality Game. J. Sci. Educ. Technol. 2021, 30, 347–360. [Google Scholar] [CrossRef]
- Huang, W.; Roscoe, R.D.; Johnson-Glenberg, M.C.; Craig, S.D. Motivation, Engagement, and Performance across Multiple Virtual Reality Sessions and Levels of Immersion. J. Comput. Assist. Learn. 2021, 37, 745–758. [Google Scholar] [CrossRef]
- Parong, J.; Mayer, R.E. Learning Science in Immersive Virtual Reality. J. Educ. Psychol. 2018, 110, 785–797. [Google Scholar] [CrossRef]
- Geijtenbeek, T.; Steenbrink, F.; Otten, B.; Even-Zohar, O. D-Flow: Immersive Virtual Reality and Real-Time Feedback for Rehabilitation. In Proceedings of the VRCAI ‘11: The 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, Hong Kong, China, 11–12 December 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 201–208. [Google Scholar]
- Kizony, R.; Katz, N.; Weiss, P.L. Adapting an Immersive Virtual Reality System for Rehabilitation. J. Vis. Comput. Animat. 2003, 14, 261–268. [Google Scholar] [CrossRef]
- Meldrum, D.; Glennon, A.; Herdman, S.; Murray, D.; McConn-Walsh, R. Virtual Reality Rehabilitation of Balance: Assessment of the Usability of the Nintendo Wii® Fit Plus. Disabil. Rehabil. Assist. Technol. 2012, 7, 205–210. [Google Scholar] [CrossRef]
- Vaezipour, A.; Aldridge, D.; Koenig, S.; Theodoros, D.; Russell, T. “It’s Really Exciting to Think Where It Could Go”: A Mixed-Method Investigation of Clinician Acceptance, Barriers and Enablers of Virtual Reality Technology in Communication Rehabilitation. Disabil. Rehabil. 2022, 44, 3946–3958. [Google Scholar] [CrossRef]
- Glegg, S.M.N.; Holsti, L.; Velikonja, D.; Ansley, B.; Brum, C.; Sartor, D. Factors Influencing Therapists’ Adoption of Virtual Reality for Brain Injury Rehabilitation. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Huygelier, H.; Schraepen, B.; van Ee, R.; Vanden Abeele, V.; Gillebert, C.R. Acceptance of Immersive Head-Mounted Virtual Reality in Older Adults. Sci. Rep. 2019, 9, 4519. [Google Scholar] [CrossRef] [PubMed]
- Specht, J.; Schroeder, H.; Krakow, K.; Meinhardt, G.; Stegmann, B.; Meinhardt-Injac, B. Acceptance of Immersive Head-Mounted Display Virtual Reality in Stroke Patients. Comput. Hum. Behav. Rep. 2021, 4, 100141. [Google Scholar] [CrossRef]
- Cheng, K.; Cairns, P.A. Behaviour, Realism and Immersion in Games. In Proceedings of the CHI ’05 Extended Abstracts on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; Association for Computing Machinery: New York, NY, USA, 2005; pp. 1272–1275. [Google Scholar]
- Morina, N.; Ijntema, H.; Meyerbröker, K.; Emmelkamp, P.M. Can Virtual Reality Exposure Therapy Gains Be Generalized to Real-Life? A Meta-Analysis of Studies Applying Behavioral Assessments. Behav. Res. Ther. 2015, 74, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Zhang, X.; Qiu, H. Rehabilomics: A State-of-the-Art Review of Framework, Application, and Future Considerations. Front. Neurol. 2023, 14, 1103349. [Google Scholar] [CrossRef]
Databases | Strings | Numbers Results |
---|---|---|
PubMed | (((“immersive virtual reality”[Title/Abstract]) AND (“upper limb”[Title/Abstract] OR “upper extremity”[MeSH Terms])) AND (stroke[Title/Abstract])) AND (rehabilitat*[Title/Abstract]) | 28 |
Web of Science | TI = ((“immersive virtual reality” OR “serious gam*”) AND (“cyber*”)) and TS = ((“immersive virtual reality” OR “serious gam*”) AND (“cyber*”)) | 72 |
Scopus | TITLE-ABS (“immersive virtual reality” OR “serious gam*”) AND (“cyber*) | 54 |
Study | Participants | Age (Mean) | Stroke Stage | Target | Setting | Duration of the Intervention (Week) | Number of Sessions Per Week | Duration of One Session (Minute) | Clinical Evaluation | |
---|---|---|---|---|---|---|---|---|---|---|
Intervention | Control | |||||||||
Burton et al., 2022 [35] | 25 | 30 | 60 | Acute, subacute, and chronic | Hand | Hospital | 2 | NS | NS | ARAT, SUS |
Chen et al., 2023 [36] | 25 | 25 | 58 | Subacute | Upper limb | Hospital | 2 | 6 | 30 | FMA-UE |
Crepo et al., 2023 [37] | 21 | NS | 59 | Chronic | Shoulder | Hospital | 1 | 1 | 15 | ROM |
Elor et al., 2018 [38] | 6 | NS | 26 | Chronic | Arm | Hospital | 1 | 1 | 5 | Questionnaire |
Elor et al., 2022 [21] | 5 | 5 | 25 | Chronic | Shoulder | Hospital | 8 | 2 | 45 | ROM |
Everard et al., 2022 [39] | 22 | 23 | 64 | Subacute and chronic | Hand | Hospital | 1 | 1 | 45 | BBT |
Fregna et al., 2022 [40] | 16 | NS | 62 | Subacute and chronic | Hand | Hospital | 1 | 1 | 50 | FMA-UE |
Huang et al., 2022 [41] | 18 | 17 | 55 | Chronic | Upper limb | Hospital | 9 | 3 | 30 | FMA_UE |
Huang et al., 2023 [42] | 18 | 17 | 64 | Subacute | Upper limb | Hospital | 3 | 5 | 30 | FMA-UE, BI |
Hsu et al., 2022 [43] | 15 | 15 | 55 | Chronic | Upper limb | Hospital | 5 | 2.67 | 60 | FMA-UE |
Juan et al., 2022 [44] | 14 | NS | 41 | Chronic | Hand | Hospital | NS | NS | NS | LMS |
Kamatchi et al., 2023 [45] | 8 | 8 | 57 | Subacute | Upper limb | Hospital | 8 | 5 | 45 | FMA-UE |
Lee et al., 2020 [46] | 12 | NS | 40 | Chronic | Hand | Hospital | 3 | 2.5 | 30 | ARAT |
Lim et al., 2020 [47] | 10 | 10 | 60 | Chronic | Hand | Hospital | 4 | 4 | 30 | BBT, ARAT |
Lin et al., 2020 [48] | 9 | 9 | 22 | Chronic | Upper limb | Hospital | 2 | 2 | 45 | FMA-UE |
Matamala-Gomez et al., 2022 [49] | 20 | NS | 60 | Chronic | Arm | Hospital | 5 | 3 | 20 | FMA-UE, DASH, ROM |
Mekbib et al., 2021 [50] | 11 | 12 | 55 | Subacute | Upper limb | Hospital | 2 | 4 | 60 | BI, FMA-UE |
Ogun et al., 2019 [51] | 33 | 32 | 61 | Chronic | Upper limb | Hospital | 6 | 3 | 60 | FMA-UE, ARAT |
Park et al., 2021 [52] | 1 | NS | 56 | Subacute | Hand | Hospital | 4 | 5 | 20 | TULIA |
Phelan et al., 2021 [53] | 10 | NS | 11 | Chronic | Upper limb | Hospital | 1 | 1 | 15 | ROM |
Phelan et al., 2023 [5] | 8 | NS | 13 | Chronic | Shoulder | Home-Based | NS | NS | NS | ROM |
Sip et al., 2022 [54] | 10 | 10 | 57 | Subacute | Upper limb | Hospital | 3 | 6 | 30 | FMA-UE |
Song and Lee 2021 [55] | 6 | 6 | 64 | Chronic | Arm | Hospital | 4 | 5 | 30 | EMG and MFT |
Tokgöz et al., 2023 [56] | 4 | NS | NS | Chronic | Shoulder | Hospital | 3 | NS | 30 | ROM |
Tran et al., 2021 [57] | 10 | 10 | 49 | Chronic | Arm | Hospital | 4 | 7 | 30 | ARAT |
Study | Country | Methodology Adopted for Development | Game Engine | Programming Language | VR Headset | Platform | Game Types |
---|---|---|---|---|---|---|---|
Burton et al., 2022 [35] | Belgium | NS | Unity 3D | C# | Oculus Quest | Standalone Headset | Developed |
Chen et al., 2023 [36] | China | NS | Unity 3D | NS | NS | NS | Developed |
Crepo et al., 2023 [37] | Spain | NS | Unity 3D | NS | Oculus Quest | Standalone headset | Developed |
Elor et al., 2018 [38] | USA | User center design | Unity 3D | C# and Javascript | HTC Vive | Desktop | Developed |
Elor et al., 2022 [21] | USA | NS | Unity 3D | NS | HTC Vive | Desktop | Developed |
Everard et al., 2022 [39] | Belgium | NS | Unity 3D | C# | Oculus Quest | Standalone Headset | Developed |
Fregna et al., 2022 [40] | Italy | NS | Unity 3D | C# | Oculus Quest | Standalone Headset | Developed |
Huang et al., 2022 [41] | Taiwan | NS | NA | NS | HTC Vive | Desktop | Developed |
Huang et al., 2023 [42] | Taiwan | NS | Unity 3D | NS | Oculus Rift | Laptop | Developed |
Hsu et al., 2022 [43] | China | NS | NS | NS | NS | NS | NS |
Juan et al., 2022 [44] | Spain | NS | Unity 3D | C# | Oculus Quest | Standalone Headset | Developed |
Kamatchi et al., 2023 [45] | India | NS | NS | NS | RUSU PLAY VR | Mobile | Open |
Lee et al., 2020 [46] | Korea | NS | NS | NS | HTC Vive | Desktop | Commercial |
Lim et al., 2020 [47] | Korea | NS | NS | NS | HTC Vive | Desktop | NS |
Lin et al., 2020 [48] | Taiwan | NS | Unity 3D | NS | Oculus Rift | Desktop | Developed |
Matamala-Gomez et al., 2022 [49] | Spain | NS | Unity 3D | C# | Oculus Quest | Desktop | Developed |
Mekbib et al., 2021 [50] | China | NS | Unity 3D | C# | HTC Vive | Laptop | Developed |
Ogun et al., 2019 [51] | Brazil | NS | NS | NS | NS | NS | Developed |
Park et al., 2021 [52] | Korea | NS | NS | NS | HTC Vive | Desktop | Developed |
Phelan et al., 2021 [53] | UK | NS | Unreal | NS | Oculus Quest | Standalone Headset | Developed |
Phelan et al., 2023 [5] | UK | NS | Unreal | NS | Oculus Quest | Standalone Headset | Developed |
Sip et al., 2022 [54] | Poland | NS | NS | NS | Oculus Quest | Standalone Headset | NS |
Song and Lee 2021 [55] | Korea | NS | NS | NS | Oculus Quest | Laptop | Developed |
Tokgöz et al., 2023 [56] | Germany | NS | Unity 3D | C# | Oculus Quest | NS | Developed |
Tran et al., 2021 [57] | USA | VR2 clinical study design | NS | NS | Oculus Quest | Desktop | Commercial |
Category | Game Scenarios | Detailed Description | Technical Details |
---|---|---|---|
Fine Motor Skills | Grasp, Grip, Pinch, and Gross Movement [35] | Involves tasks such as lifting, pouring, and pinching various objects. Aimed at improving fine motor skills crucial for daily tasks. | Utilizes high-precision motion tracking to monitor and adapt to the user’s specific motor capabilities. |
Grasping Cube Object [39] | Requires precise manipulation of a cube within a box, simulating real-world object handling, enhancing hand-eye coordination and spatial understanding. | Employs 3D spatial mapping and real-time feedback to ensure accurate hand positioning and movement tracking. | |
Hammering, Ball Catch, Cup Pour, Bubble Touch, Xylophone [46] | Engages users in activities that require various precision movements, enhancing dexterity, and coordination. Each activity targets different motor skills from grip strength to touch sensitivity. | Features adaptive difficulty settings and haptic feedback to reinforce proper hand movements. | |
Grasping, Transporting, and Releasing Ball [50] | Focuses on the detailed task of moving objects with precision. This game helps in refining motor control and enhancing cognitive planning associated with hand movements. | Incorporates real-time error correction and motion analysis to tailor exercises to patient needs. | |
Gross Motor Skills and Body Movement | Catching Falling Stars [38] | Players interact with objects descending along various trajectories, which promotes full-body movement and spatial awareness. | Full-body motion capture technology is used to evaluate and enhance body coordination and reflexes. |
Ball in Hole, Cloud Glasses, Rolling Pin [40] | Tasks involve pushing and rolling motions that engage major muscle groups, ideal for restoring gross motor skills and improving physical coordination. | Combines VR environments with physical props to enhance the realism of interactions. | |
Climbing [53] | Climbing simulation that involves extensive upper body movement, enhancing strength, and flexibility. Includes safety features to prevent virtual “falls” and encourage risk-free practice. | Dynamic difficulty adjustment and safety algorithms to simulate realistic climbing challenges safely. | |
Virtual Reality and Full Immersion | Shooting Gallery, Playground, Basketball Court, Boxing Arena, Fencing Hall [58] | A variety of physically interactive VR scenarios ranging from sports to cooking, designed to engage cognitive functions and physical stamina. | Advanced VR systems with immersive audiovisual environments and interactive gameplay mechanics. |
Living Room, Kitchen, Veranda, Convenience Store [55] | Simulates daily life activities within a household, enabling patients to practice routine tasks in a controlled, virtual environment. Helps in cognitive recovery and independence training. | Lifelike VR settings with detailed object interactions to mimic real-life scenarios and movements. | |
Simulated Daily Activities | Lifting and Eating an Apple [44] | Simulates the action of eating an apple to coordinate arm lifting with mouth movements, useful for patients recovering from upper limb impairments. | Utilizes biomechanical models to simulate realistic arm and hand movements. |
Dressing, Eating, Drinking, Washing, Brushing Teeth, Combing Hair [52] | Activities designed to mimic essential daily tasks, each targeting specific motor and cognitive skills needed for self-care and independence. | Tailored scenarios that adjust in complexity based on the patient’s progress and capabilities. | |
Grasping Object Game [49] | Focuses on mental planning and execution of complex hand movements, with visuo-tactile feedback enhancing the sense of touch and motor planning. | Combines auditory instructions with visual stimuli to guide movement and enhance mental engagement. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diriba Kenea, C.; Gemechu Abessa, T.; Lamba, D.; Bonnechère, B. Technological Features of Immersive Virtual Reality Systems for Upper Limb Stroke Rehabilitation: A Systematic Review. Sensors 2024, 24, 3546. https://doi.org/10.3390/s24113546
Diriba Kenea C, Gemechu Abessa T, Lamba D, Bonnechère B. Technological Features of Immersive Virtual Reality Systems for Upper Limb Stroke Rehabilitation: A Systematic Review. Sensors. 2024; 24(11):3546. https://doi.org/10.3390/s24113546
Chicago/Turabian StyleDiriba Kenea, Chala, Teklu Gemechu Abessa, Dheeraj Lamba, and Bruno Bonnechère. 2024. "Technological Features of Immersive Virtual Reality Systems for Upper Limb Stroke Rehabilitation: A Systematic Review" Sensors 24, no. 11: 3546. https://doi.org/10.3390/s24113546
APA StyleDiriba Kenea, C., Gemechu Abessa, T., Lamba, D., & Bonnechère, B. (2024). Technological Features of Immersive Virtual Reality Systems for Upper Limb Stroke Rehabilitation: A Systematic Review. Sensors, 24(11), 3546. https://doi.org/10.3390/s24113546