Place Recognition through Multiple LiDAR Scans Based on the Hidden Markov Model
Abstract
:1. Introduction
- We propose a place recognition method based on multiple descriptor matching, which utilizes the HMM model to integrate constraints from the SC descriptor and LiDAR odometry obtained from consecutive LiDAR keyframes online, aiming to maximize the emission probability for place recognition. Our approach significantly enhances the place recognition accuracy and reduces potential issues related to error matching compared to a single descriptor match.
- We validate our system based on the open-source KITTI dataset, and the results show that our method effectively improves the accuracy of place recognition.
2. Related Work
2.1. Initial Localization
2.2. Place Recognition
3. System Overview
3.1. Definition and Notation
3.2. System Structure
4. Prior Map
4.1. PCM
4.2. SC Descriptor Database
5. Online Place Recognition-Based HMM
5.1. HMM Model
5.2. Candidate Selection
5.3. SC Constraint
5.4. LiDAR Odometry Constraint
5.5. Place Recognition and Point Cloud Registration
Algorithm 1 Online Place Recognition Procedure |
Input online LiDAR keyframe scans , SC and ring key descriptor of prior map and Output Initial Pose
|
6. Experiments
6.1. Experiment Preparation
6.2. Precision Recall Evaluation
6.3. Time Consumption
6.4. Running Distance
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Special Orthogonal Group | |
Special Euclidean Group | |
Lie Algebra of | |
Lie Algebra of | |
Position Vector | |
Rotation Matrix | |
Transformation Matrix | |
Lie Algebra of R | |
Lie Algebra of T |
References
- Ding, W.; Hou, S.; Gao, H.; Wan, G.; Song, S. LiDAR Inertial Odometry Aided Robust LiDAR Localization System in Changing City Scenes. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4322–4328. [Google Scholar]
- Pan, L.; Ji, K.; Zhao, J. Tightly-coupled multi-sensor fusion for localization with LiDAR feature maps. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 5215–5221. [Google Scholar]
- Thrun, S. Probabilistic robotics. Commun. ACM 2002, 45, 52–57. [Google Scholar] [CrossRef]
- Kim, G.; Kim, A. Scan context: Egocentric spatial descriptor for place recognition within 3d point cloud map. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4802–4809. [Google Scholar]
- Kim, G.; Park, B.; Kim, A. 1-day learning, 1-year localization: Long-term lidar localization using scan context image. IEEE Robot. Autom. Lett. 2019, 4, 1948–1955. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B.; Duarte, F.; Ratti, C.; Rus, D. Robust place recognition using an imaging lidar. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 5469–5475. [Google Scholar]
- Mangelson, J.G.; Dominic, D.; Eustice, R.M.; Vasudevan, R. Pairwise consistent measurement set maximization for robust multi-robot map merging. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2916–2923. [Google Scholar]
- Chen, X.; Vizzo, I.; Läbe, T.; Behley, J.; Stachniss, C. Range image-based LiDAR localization for autonomous vehicles. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 5802–5808. [Google Scholar]
- Wasisto, I.; Istiqomah, N.; Trisnawan, I.K.N.; Jati, A.N. Implementation of Mobile Sensor Navigation System Based on Adaptive Monte Carlo Localization. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019. [Google Scholar]
- Feng, H.; Luo, J.; Gui, L.; Huang, H. A new approach of initial localization for unmanned vehicles based on 3d descriptor and normal distributions transform. In Proceedings of the 2022 8th International Conference on Control, Automation and Robotics (ICCAR), Xiamen, China, 8–10 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 242–247. [Google Scholar]
- Wang, H.; Wang, C.; Chen, C.L.; Xie, L. F-loam: Fast lidar odometry and mapping. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4390–4396. [Google Scholar]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Daniela, R. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 5135–5142. [Google Scholar]
- Gálvez-López, D.; Tardos, J.D. Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 2012, 28, 1188–1197. [Google Scholar] [CrossRef]
- Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Steder, B.; Grisetti, G.; Burgard, W. Robust place recognition for 3D range data based on point features. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1400–1405. [Google Scholar]
- Lindeberg, T. Feature detection with automatic scale selection. Int. J. Comput. Vis. 1998, 30, 79–116. [Google Scholar] [CrossRef]
- Cao, F.; Zhuang, Y.; Zhang, H.; Wang, W. Robust place recognition and loop closing in laser-based SLAM for UGVs in urban environments. IEEE Sens. J. 2018, 18, 4242–4252. [Google Scholar] [CrossRef]
- Guo, J.; Borges, P.V.; Park, C.; Gawel, A. Local descriptor for robust place recognition using lidar intensity. IEEE Robot. Autom. Lett. 2019, 4, 1470–1477. [Google Scholar] [CrossRef]
- Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 2014, 125, 251–264. [Google Scholar] [CrossRef]
- Uy, M.A.; Lee, G.H. Pointnetvlad: Deep point cloud based retrieval for large-scale place recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4470–4479. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Arandjelovic, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN architecture for weakly supervised place recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5297–5307. [Google Scholar]
- Chen, X.; Läbe, T.; Milioto, A.; Röhling, T.; Vysotska, O.; Haag, A.; Behley, J.; Stachniss, C. OverlapNet: Loop closing for LiDAR-based SLAM. arXiv 2021, arXiv:2105.11344. [Google Scholar]
- Zhou, Z.; Zhao, C.; Adolfsson, D.; Su, S.; Gao, Y.; Duckett, T.; Sun, L. Ndt-transformer: Large-scale 3d point cloud localisation using the normal distribution transform representation. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 5654–5660. [Google Scholar]
- Luo, L.; Zheng, S.; Li, Y.; Fan, Y.; Yu, B.; Cao, S.Y.; Li, J.; Shen, H.L. BEVPlace: Learning LiDAR-based place recognition using bird’s eye view images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 8700–8709. [Google Scholar]
- Komorowski, J. Minkloc3d: Point cloud based large-scale place recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021; pp. 1790–1799. [Google Scholar]
- Muhammad, N.; Lacroix, S. Loop closure detection using small-sized signatures from 3D LIDAR data. In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 333–338. [Google Scholar]
- He, L.; Wang, X.; Zhang, H. M2DP: A novel 3D point cloud descriptor and its application in loop closure detection. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 231–237. [Google Scholar]
- Kim, G.; Choi, S.; Kim, A. Scan context++: Structural place recognition robust to rotation and lateral variations in urban environments. IEEE Trans. Robot. 2021, 38, 1856–1874. [Google Scholar] [CrossRef]
- Weyand, T.; Kostrikov, I.; Philbin, J. Planet-photo geolocation with convolutional neural networks. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part VIII 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 37–55. [Google Scholar]
- Xu, X.; Yin, H.; Chen, Z.; Li, Y.; Wang, Y.; Xiong, R. Disco: Differentiable scan context with orientation. IEEE Robot. Autom. Lett. 2021, 6, 2791–2798. [Google Scholar] [CrossRef]
- Deng, Q.; Söffker, D. A review of HMM-based approaches of driving behaviors recognition and prediction. IEEE Trans. Intell. Veh. 2021, 7, 21–31. [Google Scholar] [CrossRef]
- Magnusson, M. The Three-Dimensional Normal-Distributions Transform: An Efficient Representation for Registration, Surface Analysis, and Loop Detection. Ph.D. Thesis, Örebro Universitet, Örebro, Sweden, 2009. [Google Scholar]
- Chau, W.Y.; Loong, C.N.; Wang, Y.H.; Chiu, S.W.; Tan, T.J.; Wu, J.; Leung, M.L.; Tan, P.S.; Ooi, G.L. Understanding the dynamic properties of trees using the motions constructed from multi-beam flash light detection and ranging measurements. J. R. Soc. Interface 2022, 19, 20220319. [Google Scholar] [CrossRef] [PubMed]
Sequence | Sub-Map | Time Period (s) | Length (m) | Keyframes |
---|---|---|---|---|
KITTI-00 | Target | 110 (0–110) | 768.99 | 476 |
Source | 150 (110–260) | 1123.99 | 679 | |
KITTI-05 | Target | 125 (0–125) | 970.91 | 538 |
Source | 162 (125–287) | 1330.38 | 687 | |
KITTI-08 | Target | 110 (0–110) | 919.30 | 500 |
Source | 100 (110–210) | 696.50 | 420 |
Classification | Predict True | Predict False |
---|---|---|
Actual True | True Positive (TP) | False Negative (FN) |
Actual False | False Positive (FP) | True Negative (TN) |
Sequence | SC | Mul SC | HMM |
---|---|---|---|
KITTI 00 | 0.9549 | 0.9667 | 0.9722 |
KITTI 05 | 0.9707 | 0.9675 | 0.9919 |
KITTI 08 | 0.7754 | 0.8193 | 0.8946 |
Sequence | SC | Mul SC | HMM | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | Mean | Std | Max | Mean | Std | Max | Mean | Std | |
KITTI 00 | 1.0132 | 0.8372 | 0.0250 | 2.8615 | 2.5116 | 0.0498 | 2.8789 | 2.5295 | 0.0500 |
KITTI 05 | 1.0016 | 0.8265 | 0.0200 | 2.7973 | 2.4782 | 0.0375 | 2.8164 | 2.4953 | 0.0376 |
KITTI 08 | 1.0894 | 0.9492 | 0.0249 | 3.1127 | 2.8477 | 0.0501 | 3.1322 | 2.8652 | 0.0500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, L.; Zeng, C.; Luo, J.; Yang, X. Place Recognition through Multiple LiDAR Scans Based on the Hidden Markov Model. Sensors 2024, 24, 3611. https://doi.org/10.3390/s24113611
Gui L, Zeng C, Luo J, Yang X. Place Recognition through Multiple LiDAR Scans Based on the Hidden Markov Model. Sensors. 2024; 24(11):3611. https://doi.org/10.3390/s24113611
Chicago/Turabian StyleGui, Linqiu, Chunnian Zeng, Jie Luo, and Xu Yang. 2024. "Place Recognition through Multiple LiDAR Scans Based on the Hidden Markov Model" Sensors 24, no. 11: 3611. https://doi.org/10.3390/s24113611
APA StyleGui, L., Zeng, C., Luo, J., & Yang, X. (2024). Place Recognition through Multiple LiDAR Scans Based on the Hidden Markov Model. Sensors, 24(11), 3611. https://doi.org/10.3390/s24113611