Detection of α-Galactosidase A Reaction in Samples Extracted from Dried Blood Spots Using Ion-Sensitive Field Effect Transistors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device and Microfluidic System Formation
2.3. Enzyme Activity Measurements
2.3.1. Fluorescent Measurements
2.3.2. ISFET Measurements Using a Semiconductor Parameter Analyzer
2.3.3. Measurements of the Samples Extracted from Dry Blood Spots
3. Results and Discussion
3.1. ISFET Fabrication
3.2. Optimization of Buffer Composition
3.3. GLA Reaction with Native Substrate
3.4. Sensor Characterization with Au Pseudo-Reference Electrode
3.5. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BEOL | back end of line |
CMOS | complementary metal-oxide semiconductor |
DBSs | dried blood spots |
ISFET | ion-sensitive field effect transistor |
FD | Fabry disease |
GLA | glycohydrolase α-galactosidase A, α-galactosidase A |
NBS | newborn screening |
4-MU-α-Gal | 4-methylumbelliferyl-α-d-galactopyranoside |
References
- McCandless, S.E.; Wright, E.J. Mandatory Newborn Screening in the United States: History, Current Status, and Existential Challenges. Birth Defects Res. 2020, 112, 350–366. [Google Scholar] [CrossRef] [PubMed]
- Gragnaniello, V.; Burlina, A.B.A.P.; Polo, G.; Giuliani, A.; Salviati, L.; Duro, G.; Cazzorla, C.; Rubert, L.; Maines, E.; Germain, D.P.; et al. Newborn Screening for Fabry Disease in Northeastern Italy: Results of Five Years of Experience. Biomolecules 2021, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Colon, C.; Ortolano, S.; Melcon-Crespo, C.; Alvarez, J.V.; Lopez-Suarez, O.E.; Couce, M.L.; Fernández-Lorenzo, J.R. Newborn Screening for Fabry Disease in the North-West of Spain. Eur. J. Pediatr. 2017, 176, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Kido, J.; Yoshida, S.; Sugawara, K.; Momosaki, K.; Inoue, T.; Tajima, G.; Sawada, H.; Mastumoto, S.; Endo, F.; et al. Newborn Screening for Fabry Disease in the Western Region of Japan. Mol. Genet. Metab. Rep. 2020, 22, 100562. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guan, X.-W.; Wang, Y.-Y.; Hong, D.-Y.; Zhang, Z.-L.; Li, Y.-H.; Yang, P.-Y.; Wang, X.; Jiang, T.; Chi, X. Newborn Genetic Screening for Fabry Disease: Insights from a Retrospective Analysis in Nanjing, China. Clin. Chim. Acta 2024, 557, 117889. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, P.V.; Campbell, C.; Klug, T.; Rogers, S.; Raburn-Miller, J.; Kiesling, J. Lysosomal Storage Disorder Screening Implementation: Findings from the First Six Months of Full Population Pilot Testing in Missouri. J. Pediatr. 2015, 166, 172–177. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Burlina, A.P.; Commone, A.; Gueraldi, D.; Puma, A.; Porcù, E.; Stornaiuolo, M.; Cazzorla, C.; Burlina, A.B. Newborn Screening for Fabry Disease: Current Status of Knowledge. Int. J. Neonatal Screen 2023, 9, 31. [Google Scholar] [CrossRef]
- Azevedo, O.; Gago, M.F.; Miltenberger-Miltenyi, G.; Sousa, N.; Cunha, D. Fabry Disease Therapy: State-of-the-Art and Current Challenges. Int. J. Mol. Sci. 2020, 22, 206. [Google Scholar] [CrossRef]
- Germain, D.P. Fabry Disease. Orphanet. J. Rare Dis. 2010, 5, 30. [Google Scholar] [CrossRef]
- Bhattacharyya, I.M.; Cohen, S.; Shalabny, A.; Bashouti, M.; Akabayov, B.; Shalev, G. Specific and Label-Free Immunosensing of Protein-Protein Interactions with Silicon-Based ImmunoFETs. Biosens. Bioelectron. 2019, 132, 143–161. [Google Scholar] [CrossRef]
- Ben Halima, H.; Bellagambi, F.G.; Alcacer, A.; Pfeiffer, N.; Heuberger, A.; Hangouët, M.; Zine, N.; Bausells, J.; Elaissari, A.; Errachid, A. A Silicon Nitride ISFET Based Immunosensor for Tumor Necrosis Factor-Alpha Detection in Saliva. A Promising Tool for Heart Failure Monitoring. Anal. Chim. Acta 2021, 1161, 338468. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, T.; Yang, M.; Wu, C.; Zhang, W.; Chu, Z.; Jin, W. A Handheld Testing Device for the Fast and Ultrasensitive Recognition of Cardiac Troponin I via an Ion-Sensitive Field-Effect Transistor. Biosens. Bioelectron. 2021, 193, 113554. [Google Scholar] [CrossRef] [PubMed]
- Sheibani, S.; Capua, L.; Kamaei, S.; Akbari, S.S.A.; Zhang, J.; Guerin, H.; Ionescu, A.M. Extended Gate Field-Effect-Transistor for Sensing Cortisol Stress Hormone. Commun. Mater. 2021, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Chae, M.-S.; Yoo, Y.K.; Kim, J.; Kim, T.G.; Hwang, K.S. Graphene-Based Enzyme-Modified Field-Effect Transistor Biosensor for Monitoring Drug Effects in Alzheimer’s Disease Treatment. Sens. Actuators B Chem. 2018, 272, 448–458. [Google Scholar] [CrossRef]
- Souteyrand, E.; Cloarec, J.P.; Martin, J.R.; Wilson, C.; Lawrence, I.; Mikkelsen, S.; Lawrence, M.F. Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect. J. Phys. Chem. B 1997, 101, 2980–2985. [Google Scholar] [CrossRef]
- Chang, C.-F.; Lu, M.S.-C. CMOS Ion Sensitive Field Effect Transistors for Highly Sensitive Detection of DNA Hybridization. IEEE Sens. J. 2020, 20, 8930–8937. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Dang, T.C.; Huang, X.; Feng, H.; Zhang, Q.; Yu, H. A High-Sensitivity Potentiometric 65-Nm CMOS ISFET Sensor for Rapid E. coli Screening. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Pourciel-Gouzy, M.L.; Sant, W.; Humenyuk, I.; Malaquin, L.; Dollat, X.; Temple-Boyer, P. Development of PH-ISFET Sensors for the Detection of Bacterial Activity. Sens. Actuators B Chem. 2004, 103, 247–251. [Google Scholar] [CrossRef]
- Nabovati, G.; Ghafar-Zadeh, E.; Sawan, M. A 64 Pixel ISFET-Based Biosensor for Extracellular PH Gradient Monitoring. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2017; IEEE: Piscataway, NJ, USA, 2015; pp. 1762–1765. [Google Scholar]
- Gubanova, O.; Poletaev, A.; Komarova, N.; Grudtsov, V.; Ryazantsev, D.; Shustinskiy, M.; Shibalov, M.; Kuznetsov, A. A Novel Extended Gate ISFET Design for Biosensing Application Compatible with Standard CMOS. Mater. Sci. Semicond. Process. 2024, 177, 108387. [Google Scholar] [CrossRef]
- Asano, N.; Ishii, S.; Kizu, H.; Ikeda, K.; Yasuda, K.; Kato, A.; Martin, O.R.; Fan, J. In Vitro Inhibition and Intracellular Enhancement of Lysosomal A-galactosidase a Activity in Fabry Lymphoblasts by 1-deoxygalactonojirimycin and Its Derivatives. Eur. J. Biochem. 2000, 267, 4179–4186. [Google Scholar] [CrossRef]
- Andrianova, M.S.; Gubanova, O.V.; Komarova, N.V.; Kuznetsov, E.V.; Kuznetsov, A.E. Development of a Biosensor Based on Phosphotriesterase and N-Channel ISFET for Detection of Pesticides. Electroanalysis 2016, 28, 1311–1321. [Google Scholar] [CrossRef]
- Fan, J.-Q.; Ishii, S.; Asano, N.; Suzuki, Y. Accelerated Transport and Maturation of Lysosomal α–Galactosidase A in Fabry Lymphoblasts by an Enzyme Inhibitor. Nat. Med. 1999, 5, 112–115. [Google Scholar] [CrossRef]
- Tarasov, A.; Wipf, M.; Stoop, R.L.; Bedner, K.; Fu, W.; Guzenko, V.A.; Knopfmacher, O.; Calame, M.; Schönenberger, C. Understanding the Electrolyte Background for Biochemical Sensing with Ion-Sensitive Field-Effect Transistors. ACS Nano 2012, 6, 9291–9298. [Google Scholar] [CrossRef] [PubMed]
- Moser, N.; Lande, T.S.; Toumazou, C.; Georgiou, P. ISFETs in CMOS and Emergent Trends in Instrumentation: A Review. IEEE Sens. J. 2016, 16, 6496–6514. [Google Scholar] [CrossRef]
- Lu, T.-F.; Chuang, H.-C.; Wang, J.-C.; Yang, C.-M.; Kuo, P.-C.; Lai, C.-S. Effects of Thickness Effect and Rapid Thermal Annealing on PH Sensing Characteristics of Thin HfO2 Films Formed by Atomic Layer Deposition. Jpn. J. Appl. Phys. 2011, 50, 10PG03. [Google Scholar] [CrossRef]
- Rigante, S.; Wipf, M.; Bazigos, A.; Bedner, K.; Bouvet, D.; Ionescu, A.M. Finfet with Fully PH-Responsive HFO2 as Highly Stable Biochemical Sensor. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1063–1066. [Google Scholar]
- Beutler, E.; Kuhl, W. Purification and Properties of Human α-Galactosidases. J. Biol. Chem. 1972, 247, 7195–7200. [Google Scholar] [CrossRef]
- van der Schoot, B.H.; Bergveld, P. ISFET Based Enzyme Sensors. Biosensors 1987, 3, 161–186. [Google Scholar] [CrossRef] [PubMed]
- Parizi, K.B.; Xu, X.; Pal, A.; Hu, X.; Wong, H.S.P. ISFET PH Sensitivity: Counter-Ions Play a Key Role. Sci. Rep. 2017, 7, 41305. [Google Scholar] [CrossRef] [PubMed]
- Olivova, P.; van der Veen, K.; Cullen, E.; Rose, M.; Zhang, X.K.; Sims, K.B.; Keutzer, J.; Browning, M.F. Effect of Sample Collection on α-Galactosidase a Enzyme Activity Measurements in Dried Blood Spots on Filter Paper. Clin. Chim. Acta 2009, 403, 159–162. [Google Scholar] [CrossRef]
- Ioannou, Y.A.; Bishop, D.F.; Desnick, R.J. Overexpression of Human Alpha-Galactosidase A Results in Its Intracellular Aggregation, Crystallization in Lysosomes, and Selective Secretion. J. Cell Biol. 1992, 119, 1137–1150. [Google Scholar] [CrossRef]
- Sista, R.S.; Wang, T.; Wu, N.; Graham, C.; Eckhardt, A.; Winger, T.; Srinivasan, V.; Bali, D.; Millington, D.S.; Pamula, V.K. Multiplex Newborn Screening for Pompe, Fabry, Hunter, Gaucher, and Hurler Diseases Using a Digital Microfluidic Platform. Clin. Chim. Acta 2013, 424, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Lafleur, J.P.; Jönsson, A.; Senkbeil, S.; Kutter, J.P. Recent Advances in Lab-on-a-Chip for Biosensing Applications. Biosens. Bioelectron. 2016, 76, 213–233. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Georgiou, P.; Prodromakis, T.; Constandinou, T.G.; Toumazou, C. An Extended CMOS ISFET Model Incorporating the Physical Design Geometry and the Effects on Performance and Offset Variation. IEEE Trans. Electron. Devices 2011, 58, 4414–4422. [Google Scholar] [CrossRef]
- Chang, K.-M.; Chang, C.-T.; Chao, K.-Y.; Lin, C.-H. A Novel PH-Dependent Drift Improvement Method for Zirconium Dioxide Gated PH-Ion Sensitive Field Effect Transistors. Sensors 2010, 10, 4643–4654. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Nyholm, L.; Jokilaakso, N.; Karlström, A.E.; Linnros, J.; Smith, U.; Zhang, S.-L. Current Instability for Silicon Nanowire Field-Effect Sensors Operating in Electrolyte with Platinum Gate Electrodes. Electrochem. Solid-State Lett. 2011, 14, J34. [Google Scholar] [CrossRef]
- Guzinski, M.; Jarvis, J.M.; Pendley, B.D.; Lindner, E. Equilibration Time of Solid Contact Ion-Selective Electrodes. Anal. Chem. 2015, 87, 6654–6659. [Google Scholar] [CrossRef] [PubMed]
- Chamoles, N.A.; Blanco, M.; Gaggioli, D. Fabry Disease: Enzymatic Diagnosis in Dried Blood Spots on Filter Paper. Clin. Chim. Acta 2001, 308, 195–196. [Google Scholar] [CrossRef] [PubMed]
- Dean, K.J.; Sung, S.-S.J.; Sweeley, C.C. The Identification of α-Galactosidase B from Human Liver as an α-Acetylgalactosaminidase. Biochem. Biophys. Res. Commun. 1977, 77, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Guevara, C.; Swaminathan, V.V.; Burgess, M.; Reddy, B.; Salm, E.; Liu, Y.-S.; Rodriguez-Lopez, J.; Bashir, R. On-Chip Metal/Polypyrrole Quasi-Reference Electrodes for Robust ISFET Operation. Analyst 2015, 140, 3630–3641. [Google Scholar] [CrossRef]
- Archbold, G.; Parra, C.; Carrillo, H.; Mouazen, A.M. Towards the Implementation of ISFET Sensors for In-Situ and Real-Time Chemical Analyses in Soils: A Practical Review. Comput. Electron. Agric. 2023, 209, 107828. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, A.; Sheshil, A.; Smolin, E.; Grudtsov, V.; Ryazantsev, D.; Shustinskiy, M.; Tikhonova, T.; Kitiashvili, I.; Vechorko, V.; Komarova, N. Detection of α-Galactosidase A Reaction in Samples Extracted from Dried Blood Spots Using Ion-Sensitive Field Effect Transistors. Sensors 2024, 24, 3681. https://doi.org/10.3390/s24113681
Kuznetsov A, Sheshil A, Smolin E, Grudtsov V, Ryazantsev D, Shustinskiy M, Tikhonova T, Kitiashvili I, Vechorko V, Komarova N. Detection of α-Galactosidase A Reaction in Samples Extracted from Dried Blood Spots Using Ion-Sensitive Field Effect Transistors. Sensors. 2024; 24(11):3681. https://doi.org/10.3390/s24113681
Chicago/Turabian StyleKuznetsov, Alexander, Andrey Sheshil, Eugene Smolin, Vitaliy Grudtsov, Dmitriy Ryazantsev, Mark Shustinskiy, Tatiana Tikhonova, Irakli Kitiashvili, Valerii Vechorko, and Natalia Komarova. 2024. "Detection of α-Galactosidase A Reaction in Samples Extracted from Dried Blood Spots Using Ion-Sensitive Field Effect Transistors" Sensors 24, no. 11: 3681. https://doi.org/10.3390/s24113681
APA StyleKuznetsov, A., Sheshil, A., Smolin, E., Grudtsov, V., Ryazantsev, D., Shustinskiy, M., Tikhonova, T., Kitiashvili, I., Vechorko, V., & Komarova, N. (2024). Detection of α-Galactosidase A Reaction in Samples Extracted from Dried Blood Spots Using Ion-Sensitive Field Effect Transistors. Sensors, 24(11), 3681. https://doi.org/10.3390/s24113681