Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection
2.3. Data Collection Process
2.4. Data Extraction
2.4.1. Qualitative Systematic Review
Study, (Year) | Design/Level of Evidence | Participants Characteristics n, Age (Years), Gender Healthy/Patients | Test Conditions, Speed (m/s) | Measuring Method, Sampling Rate | Reference Method, Sampling Rate (Hz) | Gait Parameters | Type of Reliability; Reliability Metric | Concurrent Validity Metric | Accuracy Metric |
---|---|---|---|---|---|---|---|---|---|
Clark et al. (2013) [31] | Cross-sectional/B | n = 21, 26.9 (±4.5), 11 F; 10 M Healthy | Overground, self-selected speed | Markerless Microsoft Kinect, 30 Hz | Marker-based Vicon Nexus V1.5.2 with 12 Vicon MX cameras (Vicon, UK), 120 Hz | Step length (m), stride length (m), stride time (s), step time (s), walking speed (m/s) | Inter-rater reliability rc 95% CI (CCC) | r | |
Arango Paredes et al. (2015) [32] | Case study/C | n = 1, 34, 1 F Healthy | Overground, self-selected speed | Markerless (E motion capture system based on Kinect TM), 60 Hz | Marker-based (Multiple-camera 3D motion capture system), 120 Hz | Cadence (steps/min), stride length (m), step length (m), step width (m), walking speed (m/s), | Inter-rater reliability, ICC (3, 2) | ||
Eltoukhy et al. (2017) [33] | Cross-sectional/B | n = 11, 71.1 (± 7.5), Healthy n = 8, 71.0 (± 5.6), PD | Overground, self-selected speed (1.06 m/s), barefoot | Markerless Kinect V2, 30 Hz | Marker-based 8-camera BTS optoelectronic motion capture system, 100 Hz | ROM (°) sagittal plane (ankle, knee, hip), stride length (m), stance duration (s), swing duration (s), cadence (step/min), swing velocity (m/s), walking speed (m/s) | Inter-rater reliability, ICC (2, k) ± CI 95% (combined sample) | A-ICC | |
Eltoukhy et al. (2017) [34] | Cross-sectional/B | n = 10, 26.7 (±5.4), 5 F, 5 M Healthy | Treadmill, 1.3 m/s and 1.6 m/s | Markerless A single Kinect v2 sensor (Microsoft Corp. Redmond, WA), 30 Hz | Marker-based An eight infrared camera motion analysis system (SMART-DX 7000, BTS Bioengineering, Milano, Italy), 100 Hz | ROM (°) sagittal plane (ankle, knee, hip), stride time (s), step time (s), step width (m), step length (m) | Inter-rater reliability, ICC (2, k) | A-ICC r | |
Ripic et al. (2022) [35] | Cross-sectional/B | n = 22, 22.72, F12; M10 Healthy | Overground Usual Pace | Markerless eight video cameras (KinaTrax Inc., Boca Raton, FL, USA 100 Hz | Marker-based, Vicon Plug-in-Gait (Vicon Motion Systems Inc., Oxford, UK), 100 Hz | Walking speed (m/s), stride length (m), stride width (m), step length (m), cycle time (s), stance time (s), swing time (s), step time (s), double limb support (s) | Inter-rater reliability Consistency ICC (2, k) | A-ICC | |
Mentiplay et al. (2015) [36] | Control trial/B | n = 30, 22.87 (±8 5.08), 15 F; 15 M Healthy | Overground, comfortable speed (1.26 m/s) and fast-paced trials (1.63 m/s) | Markerless Microsoft Kinect V2, 30 Hz | MCBS Vicon (9 camera Vicon system), 100 Hz | ROM (°) sagittal plane (hip, knee, ankle), walking speed (m/s), step length (m), step time (s), step width (m), foot swing velocity (m/s) | Within system, Inter-trial reliability (2 sessions 7 days apart), ICC (2, 1) | r | |
Dolatabadi et al. (2016) [37] | Cross-sectional/B | n = 20, 28.8, F10; M10 Healthy | Overground Usual pace | Kinect V2 30 Hz | Gait rite 120 Hz | Stance time (s) Step time (s) Step length (m) Walking speed (m/s) | Inter-trial reliability, ICC (3, 1) | ||
Fosty et al. (2016) [38] | Cross-sectional/B | n = 36, 32.1 (±7.6), 19 F; 17 M Healthy | Treadmill, 0.42 m/s, 0.69 m/s, 0.97 m/s, 1.25 m/s, 1.53 m/s | Markerless Asus1 Xtion PRO LIVE RGB-D camera + Kinect sensor (PCBS) | Marker-based control system (MBCS) | Walking speed (m/s) | Intra-session reliability, ICC (2, 1) | Bias | |
Otte et al. (2016) [39] | Cross-sectional/B | n = 19, 29.5 (±4.4), 12 F; 7 M Healthy | Overground, Comfortable speed walk (Mean: 1.29 m/s) | Markerless Motognosis Labs v1.0 (Motognosis UG, Berlin, Germany) with a Kinect for Windows V2 Sensor (25 (−4) markers), 30 Hz | Marker-based 1 6-camera Vicon system (MX13+, Nexus 2.1; Vicon Motion Systems Ltd., Oxford, UK) (36 IR reflecting markers), 100 Hz | Mean walking speed (m/s) | Intra-session reliability, ICC (1, 1) | ||
Pfister A et al. (2014) [40] | Cross-sectional/B | n = 20, 27.4 (±10), 11 F; 9 M Healthy | Treadmill, 1.34 m/s | Markerless Xbox Kinect (Microsoft, Redmond, WA, USA), 30–37 Hz | Marker-based Vicon MX motion capture system (Vicon, Oxford, UK), 120 Hz | ROM sagittal plane (°) (hip, knee) Stride time (s) | r | Error | |
Timmi et al. (2018) [41] | Cross- sectional/B | n = 20, 31 (±6), 9 F; 11 M Healthy | Treadmill Slow walking speed (0.83 m/s) Fast walking speed (1.31 m/s) | Markerless Kinect V2- based system 30 Hz | Marker-based 12-camera Vicon motion capture 120 Hz | ROM (°) frontal, sagittal, transverse plane (knee, ankle, hip) | Bias (°) (Upper LOA (°), Lower LOA (°)) | ||
Xu et al. (2015) [42] | Cross-sectional/B | n = 20, 28.5 (± 8.2), 10 F; 10 M Healthy | Treadmill 3 walking speeds: 0.85 m/s, 1.07 m/s, 1.30 m/s | Markerless Kinect sensor (Kinect for windows SDK 1.5) 60 Hz | Marker-based A motion tracking system (Optotrack Certus System, Northern Digital, Canada), 60 Hz | ROM (°) frontal plane (hip, knee), step time (s), stride time (s), stance time (s), swing time (s), double support time (s), step width (m) | r | RMSE (°) | |
Kanko et al. (2021) [43] | Cross-sectional/B | n = 30, 23.0 (±3.50), 15 F; 15 M Healthy | Treadmill Comfortable self-selected speed | Markerless Theia3D (Theia Markerless Inc., Kingston, ON, Canada), 85 Hz | Marker-based camera system (seven Qualisys 3+ (Qualisys AB, Gothenburg, Sweden), 85 Hz | The average 3D Euclidean distance between corresponding limb joints Lower limb segment angles (m) | RMSD (cm) RMSD (°) | ||
Kanko et al. (2021) [44] | Cross-sectional/B | n = 30, 23.0 (± 3.50), 15 F; 15 M Healthy | Treadmill Start at 1.2 m/s, self-selected speed | Markerless Theia3D (Theia Markerless Inc., Kingston, ON, Canada), 85 Hz | Marker-based camera system (seven Qualisys 3+ (Qualisys AB, Gothenburg, Sweden) 85 Hz | Gait speed (m/s), step length (m), stride length (m), step width (m), step time (s), cycle time (s), swing time (s), stance time (s), double limb support time (s) | ICC-A,1 ICC (LB-UB) r | ||
Albert et al. (2020) [45] | Pilot study/B | n = 5, 28.4 (±4.20) Healthy | Treadmill Walking speed of 0.83 m/s, 1.07 m/s, 1.30 m/s | Markerless Azure Kinect and Kinect V2 30 Hz | Marker-based Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model, 100 Hz | ROM (°) frontal, sagittal, and transverse plane (hip, knee, ankle), step length (m), step width (m), step time (s), stride time (s) | r | RMSE AE | |
Vilas-Boas et al. (2019) [46] | Cross-sectional/B | n = 20, 30.5 (±8.07), 10 F; 10 M Healthy | Overground, self-selected comfortable speed | Markerless Kinect v1 and Kinect v2 (Microsoft Corporation, Redmond, WA, USA), 30 Hz | Marker-Based Qualisys system (Qualisys AB, Sweden), 200 Hz | ROM (°) frontal plane (hip, knee, ankle), walking speed (m/s) | r | ||
Tanaka et al. (2018) [47] | Cross-sectional/B | n = 51, 20.9 (± 0.2), 16 F; 35 M Healthy | Overground Comfortable speed | Markerless A Kinect v2 sensor (Microsoft Corporation, Redmond, WA, USA) (frequency not mentioned) | Marker-based Vicon Motion Systems, Oxford, UK 120 Hz | Gait cycle sagittal & frontal angles (°) (Hip, knee) | r | ||
Dubois & Bresciani (2018) [48] | Cross-sectional/B | Young: n = 8, 25, 5 F; 3 M Older: n = 9, 69, 5 F; 4 M Senior: n = 8, 81, 5 F; 3 M Healthy | Overground Comfortable speed | Markerless A single Microsoft Kinect V2 camera | Marker-based OptiTrack cameras (Prime 17 W model) | Step length (m), step duration(s), cadence (steps/min), walking speed (m/s) | A-ICC | ||
Muller et al. (2017) [49] | Cross-sectional/B | n = 10, 18–35 Healthy | Overground Comfortable speed | Markerless Microsoft Kinect V2 30 Hz | Marker-based Vicon MX motion capture system 120 Hz | Walking speed (m/s), step time (s), stride length (m), step length (m), step width (m) | ICC (A,1) r | ||
Ruescas Nicolau et al. (2022) [50] | Cross-sectional/B | n = 12, 39.1 (± 9.8), 5 F; 7 F Healthy | Overground Comfortable speed | Markerless 3 D temporal scanner with 16 camera modules (Move4D/IBV), 30 fps | Marker- based stereophotogrammetry system (Kinescan/IBV) (16 cameras) 30 fps | Joint angle (°) frontal, sagittal, and transverse plane errors (hip, knee) | RMS | ||
Ma et al. (2020) [51] | Cross-sectional/B | n = 5, 29.8 (±5.8), 3 F; 2 M Healthy | Overground comfortable speed | Markerless Dual Azure Kinect- Based motion capture system, 30 Hz | Marker-based Eight camera based Vicon Motion capture system (Oxford Metrics Group, Oxford, UK), 100 Hz | ROM (°) sagittal and frontal plane (hip, knee, ankle) | CMC RMSE (°) | ||
Ripic et al. (2023) [52] | Cross-sectional/B | Young: n = 17, 21 (± 2), 5 F; 12 M Older: n = 7, 74 (±5), 3 F; 4 M PD: n = 11, 70 (± 8), 5 F; 6 M | Overground, usual speed | 8-camera markerless (KinaTrax Inc., Boca Raton, FL, USA), 100 Hz | Vicon Motion Systems Inc., Oxford, UK, 100 Hz | ROM (°) (hip, knee, and ankle) in sagittal, frontal, and transverse plane | ICC (3, 1)r | RMSE ± SD |
Study, Year | Inter-Rater Reliability | Inter-Trial Reliability | Intra-Session Reliability | Concurrent Validity | Accuracy | |
---|---|---|---|---|---|---|
Kinematics Hip | Eltoukhy et al. (2017) [33] Healthy | C-ICC: 0.92; 0.98 | sagittal plane A-ICC: 0.86; 0.94 | |||
Eltoukhy et al. (2017) [33] Parkinson | C-ICC: 0.93; 0.98 | sagittal plane A-ICC: 0.94; 0.97 | ||||
Eltoukhy et al. (2017) [33] Combined | C-ICC: 0.94; 0.96 | sagittal plane A-ICC: 0.92; 0.94 | ||||
▸ | Eltoukhy et al. (2017) [34] 1.3 m/s | C-ICC: 0.85 (0.38; 0.96) | A-ICC: 0.77 (0.05; 0.95) r: 0.73 (0.17; 1.25) | |||
▸ | Eltoukhy et al. (2017) [34] 1.6 m/s | C-ICC: 0.86 (0.45; 0.97) | A-ICC: 0.80 (0.10; 0.95) r: 0.77 (0.26; 1.42) | |||
Mentiplay et al. (2015) [36] Kinect comfortable speed | C-ICC: −0.10 (−0.57; 0.42) | |||||
Mentiplay et al. (2015) [36] Kinect fast-paced | C-ICC: 0.23 (−0.40; 0.71) | |||||
Mentiplay et al. (2015) [36] Vicon comfortable speed | C-ICC: 0.55 (0.16; 0.80) | |||||
Mentiplay et al. (2015) [36] Vicon fast-paced | C-ICC: 0.34 (−0.05; 0.64) | |||||
Pfister A et al. (2014) [40] ROM sagittal plane | r: −0.04; 0.27 * | Hip angular displacement was poor (r < 0.30) with errors greater than 5° in every case | ||||
▸ | Xu et al. (2015) [42] 0.85 m/s | RMSE: 11.8 (8.6) | ||||
▸ | Xu et al. (2015) [42] 1.07 m/s | RMSE: 11.7 (8.6) | ||||
▸ | Xu et al. (2015) [42] 1.30 m/s | RMSE: 11.9 (8.9) | ||||
▸ | Albert et al. (2020) [45] Ki V2 | AP: r 0.98 ML: r 0.95; 0.96 V: r 0.78; 0.80 | ||||
▸ | Albert et al. (2020) [45] Azure Ki | AP: r 0.98; 0.99 ML: r 0.89; 0.91 V: r 0.60; 0.68 | ||||
Vilas-Boas et al. (2019) [46] walking towards sensor | Ki V1: r 0.62 (0.39; 0.85) Ki V2: r 0.13 (−0.20; 0.46) | |||||
Vilas-Boas et al. (2019) [46] walking away from sensor | Ki V1: r 0.13 (−0.29; 0.55) Ki V2: r 0.54 (0.28; 0.80) | |||||
Tanaka et al. (2018) [47] sagittal plane | r: 0.43; 0.78 * | |||||
Tanaka et al. (2018) [47] frontal plane | r: 0.09; 0.71 | |||||
Ruescas Nicolau et al. (2022) [50] FE | RMS: 1.26 ± 0.3 (3.0%) | |||||
Ruescas Nicolau et al. (2022) [50] LF | RMS: 1.65 ± 0.44 (13.8%) | |||||
Ruescas Nicolau et al. (2022) [50] AR | RMS: 5.76 ± 1.95 (43.3%) | |||||
Ma et al. (2020) [51] sagittal and frontal plane | CMC: 0.48; 0.60 | RMSE: 7.2°; 15.1° | ||||
Ma et al. (2020) [51] transverse plane | Internal & external rotation hip CMC < 0.001 | RMSE: 32.2° ± 22.2 | ||||
Ripic et al. (2023) [52] sagittal plane | ICC (Cl 95%): 0.98 (0.98; 0.98) r: 0.99 | RMSE: 8.21 ± 4.06 | ||||
Ripic et al. (2023) [52] frontal plane | ICC (Cl 95%): 0.49 (0.45; 0.53) r: 0.56 | RMSE: 3.16 ± 1.30 | ||||
Ripic et al. (2023) [52] transverse plane | ICC (Cl 95%): 0.07 (0.03; 0.12) r: 0.09 | RMSE: 11.90 ± 3.83 | ||||
Eltoukhy et al. (2017) [33] Healthy | C-ICC: 0.69; 0.96 | A-ICC: 0.70; 0.92 | ||||
Kinematics Knee | Eltoukhy et al. (2017) [33] Parkinson | C-ICC: 0.92; 0.97 | A-ICC: 0.93; 0.98 | |||
Eltoukhy et al. (2017) [33] Combined | C-ICC: 0.93; 0.96 | A-ICC: 0.90; 0.96 | ||||
▸ | Eltoukhy et al. (2017) [34] 1.3 m/s | C-ICC: 0.66 (−0.39; 0.91) | A-ICC: 0.68 (−0.45; 0.92) r: 0.57 (−0.17; 2.21) | |||
▸ | Eltoukhy et al. (2017) [34] 1.6 m/s | C-ICC: 0.82 (0.27; 0.96) | A-ICC: 0.80 (0.26; 0.95) r: 0.75 (0.32; 1.95) | |||
Mentiplay et al. (2015) [36] Kinect comfortable speed | C-ICC: 0.69; 0.85 | |||||
Mentiplay et al. (2015) [36] Kinect fast-paced | C-ICC: 0.38; 0.75 | |||||
Mentiplay et al. (2015) [36] Vicon comfortable speed | C-ICC: 0.58; 0.91 | |||||
Mentiplay et al. (2015) [36] Vicon fast-paced | C-ICC: 0.55; 0.86 | |||||
▸ | Pfister A et al. (2014) [40] ROM sagittal plane | r: 0.43; 0.77 * | ||||
▸ | Timmi et al. (2018) [41] slow walk | knee flexion bias (upper LOA; lower LOA): −0.1 (−1.1; 1.0) knee adduction bias (upper LOA; lower LOA): −0.2 (−1.6; 1.3) | ||||
▸ | Timmi et al. (2018) [41] fast walk | knee flexion bias (upper LOA; lower LOA): 0.0 (−0.7; 0.8) knee adduction bias (Upper LOA; lower LOA): −0.6 (−2.8; 1.7) | ||||
▸ | Xu et al. (2015) [42] 0.85 m/s | RMSE: 27.9 (10.0) | ||||
▸ | Xu et al. (2015) [42] 1.07 m/s | RMSE: 28.6 (10.8) | ||||
▸ | Xu et al. (2015) [42] 1.30 m/s | RMSE: 29.0 (10.3) | ||||
▸ | Albert et al. (2020) [45] Ki V2 | AP: r 0.98 ML: r 0.93; 0.95 V: r 0.35; 0.41 | ||||
▸ | Albert et al. (2020) [45] Azure Ki | AP: r 0.97; 0.98 ML: r 0.87; 0.94 V: r 0.73; 0.74 | ||||
Vilas-Boas et al. (2019) [46] walking towards sensor | Ki V1: r 0.93 (0.82; 1.00) Ki V2: r 0.94 (0.84; 1.00) | |||||
Vilas-Boas et al. (2019) [46] walking away from sensor | Ki V1: r 0.87 (0.69; 1.00) Ki V2: r 0.91 (0.71; 1.00) | |||||
Tanaka et al. (2018) [47] sagittal plane | r: 0.49; 0.88 * | |||||
Tanaka et al. (2018) [47] frontal plane | r: 0.50; 0.90 * | |||||
Ruescas Nicolau et al. (2022) [50] FE | RMS: 1.98 ± 0.37 (3.3%) | |||||
Ruescas Nicolau et al. (2022) [50] LF | RMS: 3.51 ± 1.23 (37.1%) | |||||
Ruescas Nicolau et al. (2022) [50] AR | RMS: 3.62 ± 1.34 (14.8%) | |||||
Ma et al. (2020) [51] frontal and sagittal plane | CMC: 0.87 (± 0.06) | RMSE: 11.9° ± 3.4 | ||||
Ripic et al. (2023) [52] sagittal plane | ICC (Cl 95%): 0.99 (0.99; 0.99) r: 0.99 | RMSE: 7.97 ± 2.73 | ||||
Ripic et al. (2023) [52] frontal plane | ICC (Cl 95%): 0.18 (0.10; 0.26) r: 0.20 | RMSE: 6.01 ± 1.40 | ||||
Ripic et al. (2023) [52] transverse plane | ICC (Cl 95%): 0.11 (0.06; 0.17) r: 0.13 | RMSE: 10.42 ± 4.34 | ||||
Eltoukhy et al. (2017) [33] Healthy | C-ICC: 0.00; 0.20 | A-ICC: 0.00; 0.20 | ||||
Kinematics Ankle | Eltoukhy et al. (2017) [33] Parkinson | C-ICC: 0.00; 0.17 | A-ICC: 0.00; 0.17 | |||
Eltoukhy et al. (2017) [33] Combined | C-ICC: 0.00; 0.13 | A-ICC: 0.00; 0.14 | ||||
▸ | Eltoukhy et al. (2017) [34] 1.3 m/s | C-ICC: 0.01 (−0.06; 0.20) | A-ICC: 0.05 (−2.84; 0.76) r: 0.03 (−1.78; 1.93) | |||
▸ | Eltoukhy et al. (2017) [34] 1.6 m/s | C-ICC: −0.39 (−4.60; 0.65) | A-ICC: −0.03 (−0.09; 0.19) r: −0.22 (−2.20; 1.26) | |||
Mentiplay et al. (2015) [36] Kinect comfortable speed | C-ICC: 0.42 (0.02; 0.71) | |||||
Mentiplay et al. (2015) [36] Kinect fast-paced | C-ICC: 0.44 (−0.04; 0.75) | |||||
Mentiplay et al. (2015) [36] Vicon comfortable speed | C-ICC: 0.75 (0.51; 0.88) | |||||
Mentiplay et al. (2015) [36] Vicon fast-paced | C-ICC: 0.68 (0.38; 0.85) | |||||
▸ | Albert et al. (2020) [45] Ki V2 | AP: r 0.97 ML: r 0.95; 0.97 V: r 0.76; 0.78 | ||||
▸ | Albert et al. (2020) [45] Azure Ki | AP: r 0.96; 0.97 ML: r 0.81; 0.85 V: r 0.84; 0.89 | ||||
Vilas-Boas et al. (2019) [46] walking towards sensor | Ki V1: r −0.18 (−0.43; 0.07) Ki V2: r −0.15 (−0.39; 0.09) | |||||
Vilas-Boas et al. (2019) [46] walking away from sensor | Ki V1: r 0.01 (−0.23; 0.25) Ki V2: r −0.02 (−0.23; 0.19) | |||||
Ma et al. (2020) [51] frontal and sagittal plane | CMC: 0.55 (± 0.09) | RMSE: 11.6° ± 2.4 | ||||
Ripic et al. (2023) [52] sagittal plane | ICC (Cl 95%): 0.92 (0.91; 0.93) r: 0.95 | RMSE: 4.96 ± 1.84 | ||||
Ripic et al. (2023) [52] frontal plane | ICC (Cl 95%): 0.44 (0.39; 0.48) r: 0.47 | RMSE: 6.01 ± 1.40 | ||||
Ripic et al. (2023) [52] transverse plane | ICC (Cl 95%): 0.10 (0.05; 0.16) r: 0.10 | RMSE: 10.15 ± 3.49 | ||||
▸ | Kanko et al. (2021) [43] | The average RMSD (cm) between corresponding joint centers: <2.5 cm (except for the hip: 3.6 cm) RMSD: <5.5° (except those that represent rotations about the long axis of the segment) | ||||
Kinematics lower limb angles | Eltoukhy et al. (2017) [33] Healthy | C-ICC: 0.99 (0.99; 1.00) | A-ICC: 0.99 (0.99; 1.00) | |||
Spatial | Eltoukhy et al. (2017) [33] Parkinson | C-ICC: 0.99 (0.99; 1.00) | A-ICC: 0.99 (0.99; 1.00) | |||
Eltoukhy et al. (2017) [33] Combined | C-ICC: 0.99 (0.99, 0.99) | A-ICC: 0.99 (0.99; 0.99) | ||||
Clark et al. (2013) [31] | CCC: 0.97; 0.99 | r: 0.99 * | ||||
▸ | Eltoukhy et al. (2017) [34] 1.3 m/s | C-ICC: 0.58; 0.94 | A-ICC: 0.76; 0.84 r: 0.73; 0.93 | |||
▸ | Eltoukhy et al. (2017) [34] 1.6 m/s | C-ICC: 0.87; 0.95 | A-ICC: 0.67; 0.71 r: 0.84; 0.91 | |||
Ripic et al. (2022) [35] | C-ICC: 0.865; 0.938 | A-ICC: 0.867; 0.939 | ||||
Mentiplay et al. (2015) [36] comfortable speed | Ki: ICC 0.71; 0.87 Vi: ICC 0.79; 0.85 | r: 0.90; 0.94 | ||||
Mentiplay et al. (2015) [36] fast-paced | Ki: ICC 0.74; 0.94 Vi ICC 0.78; 0.85 | r: 0.92; 0.95 | ||||
Dolatabadi et al. (2016) [37] usual pace | C-ICC: 0.94 | |||||
▸ | Xu et al. (2015) [42] 0.85 m/s | r: 0.85 | ||||
▸ | Xu et al. (2015) [42] 1.07 m/s | r: 0.82 | ||||
▸ | Xu et al. (2015) [42] 1.30 m/s | r: 0.79 | ||||
▸ | Kanko et al. (2021) [44] | A-ICC: 0.92; 0.98 A-ICC LB: 0.90; 0.97 A-ICC UB: 0.93; 0.98 r: 0.92–0.94 | ||||
▸ | Albert et al. (2020) [45] Ki V2 | 0.83 m/s: RMSE: 0.07 1.07 m/s: RMSE: 0.07; 0.08 1.30 m/s: RMSE: 0.06; 0.08 | ||||
▸ | Albert et al. (2020) [45] Azure Ki | 0.83 m/s: RMSE: 0.03; 0.05 1.07 m/s: RMSE: 0.04; 0.05 1.30 m/s: RMSE: 0.04; 0.05 | ||||
Dubois & Bresciani (2018) [48] | A-ICC: 0.97 | |||||
Muller et al. (2017) [49] One-sided | ICC (A,1): 0.882; 0.996 r: 0.944; 0.998 * | |||||
Muller et al. (2017) [49] Two- sided | ICC (A,1): 0.910; 0.999 r: 0.936; 0.999 * | |||||
Eltoukhy et al. (2017) [33] Healthy | C-ICC: 0.75; 0.99 | A-ICC: 0.76; 1.00 | ||||
Temporal | Eltoukhy et al. (2017) [33] Parkinson | C-ICC: 0.68; 0.99 | A-ICC: 0.72; 1.00 | |||
Eltoukhy et al. (2017) [33] Combined | C-ICC: 0.93; 0.99 | A-ICC: 0.84; 100 | ||||
Clark et al. (2013) [31] | CCC: 0.14; 0.23 | r: 0.69; 0.82 * | ||||
▸ | Eltoukhy et al. (2017) [34] 1.3 m/s | C-ICC: 0.96; 0.98 | A-ICC: 0.87; 0.98 r: 0.96; 0.97 | |||
▸ | Eltoukhy et al. (2017) [34] 1.6 m/s | C-ICC: 0.93; 0.97 | A-ICC: 0.82; 0.94 r: 0.93; 0.95 | |||
Ripic et al. (2022) [35] | C-ICC: 0.923; 0.962 | A-ICC: 0.834; 0.951 | ||||
Mentiplay et al. (2015) [36] comfortable speed | Ki: ICC 0.03; 0.70 Vi: ICC 0.21; 0.71 | r: 0.91; 0.92 | ||||
Mentiplay et al. (2015) [36] fast-paced | Ki: ICC 0.43; 0.87 Vi: ICC 0.47; 0.90 | r: 0.88; 0.94 | ||||
Dolatabadi et al. (2016) [37] usual pace | C-ICC: 0.90; 0.92 | |||||
Pfister A et al. (2014) [40] | r: 0.87; 0.92 * | |||||
▸ | Xu et al. (2015) [42] 0.85 m/s | r: 0.24; 0.85 | ||||
▸ | Xu et al. (2015) [42] 1.07 m/s | r: 0.24; 0.92 | ||||
▸ | Xu et al. (2015) [42] 1.30 m/s | r: 0.20; 0.95 | ||||
▸ | Kanko et al. (2021) [44] | A-ICC: 0.82; 0.93 (outliers swing time ICC: 0.39 and double limb support time ICC: 0.53) A-ICC LB: 0.70; 0.92 (outliers swing time ICC: 0.22 and double support time ICC: 0.11) A-CC UB: 0.79; 0.94 (outlier swing time ICC: 0.53) r: 0.73; 0.93 (outlier swing time 0.47) | ||||
▸ | Albert et al. (2020) [45] Ki V2 | For all velocities: RMSE 0.03 | ||||
▸ | Albert et al. (2020) [45] Azure Ki | For all velocities: RMSE: 0.02; 0.03 | ||||
Dubois & Bresciani (2018) [48] | ICC: 0.94 | |||||
Muller et al. (2017) [49] | ICC (A,1): 1.000 r: 1.000 * | |||||
Spatio-temporal | Arango Paredes et al. (2015) [32] | Average ICC: 0.96 (CI 95% 0.94; 0.97) | ||||
Walking speed | Eltoukhy et al. (2017) [33] Healthy | C-ICC: 0.99 (0.99; 1.00) | A-ICC: 0.99 (0.99; 1.00) | |||
Eltoukhy et al. (2017) [33] Parkinson | C-ICC: 1.00 (0.99; 1.00) | A-ICC: 1.00 (0.99; 1.00) | ||||
Eltoukhy et al. (2017) [33] Combined | C-ICC: 0.99 (0.99; 1.00) | A-ICC: 0.99 (0.99; 1.00) | ||||
Clark et al. (2013) [31] | CCC: 0.93 (0.87; 0.96) | r: 0.95 * | ||||
Ripic et al. (2022) [35] | C-ICC: 0.964 (0.914; 0.985) | A-ICC: 0.965 (0.918; 0.985) | ||||
Mentiplay et al. (2015) [36] comfortable speed | Ki: ICC 0.75 (0.53; 0.88) Vi: ICC 0.76 (0.53; 0.88) | r: 0.99 | ||||
Mentiplay et al. (2015) [36] fast-paced | Ki: ICC 0.77 (0.54; 0.89) Vi: ICC 0.79 (0.89; 0.90) | r: 0.96 | ||||
Dolatabadi et al. (2016) [37] usual pace | C-ICC: 0.89 | |||||
▸ | Fosty et al. (2016) [38] MCBS | ICC: 0.13; 0.91 | Bias: 0.013 ± 0.015 m/s | |||
▸ | Fosty et al. (2016) [38] PCBS | ICC: 0.63; 0.91 | ||||
Otte et al. (2016) [39] Ki | ICC: 0.81 (0.67; 0.91) | |||||
Otte et al. (2016) [39] Vi | ICC: 0.80 (0.67; 0.91) | |||||
▸ | Kanko et al. (2021) [44] | A-ICC: 1.00 A-ICC LB: 1.00 A-ICC UB: 1.00 r: 1.00 | ||||
Vilas-Boas et al. (2019) [46] walking towards sensor | Ki V1: r 0.87 (0.79; 0.95) Ki V2: r 0.89 (0.76; 1.00) | |||||
Vilas-Boas et al. (2019) [46] walking away from sensor | Ki V1: r 0.78 (0.61; 0.95) Ki V2: r 0.78 (0.55; 1.01) | |||||
Dubois & Bresciani (2018) [48] | ICC: 0.96 | |||||
Muller et al. (2017) [49] | ICC (A,1): 0.999 r: 1.000 * |
2.4.2. Quantitative Analysis (Meta-Analysis) Methodology
2.5. Risk of Bias Assessment
3. Results
3.1. Risk of Bias
3.2. Study Characteristics
3.3. Results Qualitative Review
3.3.1. Reliability
Inter-Rater Reliability
Inter-Trial Reliability
Intra-Session Reliability
3.3.2. Concurrent Validity and Accuracy
Treadmill Protocol
Overground Protocol
3.4. Results Quantitative Analysis (Meta-Analysis)
3.4.1. Quantitative Pooling of Spatiotemporal Parameters for Inter-Rater Reliability
Walking Speed
Step Length
Step Time
3.4.2. Quantitative Pooling of Spatiotemporal Parameters for Concurrent Validity
Walking Speed
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Whittle, M.W. Gait Analysis: An Introduction, 2nd ed.; Butterworth: London, UK, 1996; Available online: http://ci.nii.ac.jp/ncid/BA28647613 (accessed on 5 October 2023).
- Akhtaruzzaman, M.D.; Shafie, A.A.; Khan, M.D.R. Gait analysis: Systems, technologies, and importance. J. Mech. Med. Biol. 2016, 16, 1630003. [Google Scholar] [CrossRef]
- Fritz, N.E.; Marasigan, R.E.R.; Calabresi, P.A.; Newsome, S.D.; Zackowski, K.M. The Impact of Dynamic Balance Measures on Walking Performance in Multiple Sclerosis. Neurorehabilit. Neural Repair. 2015, 29, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Scataglini, S.; Verwulgen, S.; Roosens, E.; Haelterman, R.; Van Tiggelen, D. Measuring spatiotemporal parameters on treadmill walking using wearable inertial system. Sensors 2021, 21, 4441. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, L.; Rodrigues, F.; Scataglini, S.; Baptista, R.R.; Lobo da Costa, P.; Vieira, M.F. Trunk variability and local dynamic stability during gait after generalized fatigue induced by incremental exercise test in young women in different phases of the menstrual cycle. PeerJ 2023, 11, e16223. [Google Scholar] [CrossRef]
- Scataglini, S.; Abran, G.; Roosens, E.; van Tiggelen, D.; Haelterman, R.; Verwulgen, S. Smart clothing for monitoring gait. In Proceedings of the 6th International Digital Human Modeling Symposium, DHM2020, Skovde, Sweden, 31 August–2 September 2020; Hanson, L., Högberg, D., Brolin, E., Eds.; IOS Press: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Mukaino, M.; Ohtsuka, K.; Tanikawa, H.; Matsuda, F.; Yamada, J.; Itoh, N.; Saitoh, E. Clinical-oriented Three-dimensional Gait Analysis Method for Evaluating Gait Disorder. JoVE 2018, 4, e57063. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Esquenazi, A.; Benedetti, M.G.; Desloovere, K. Gait analysis: Clinical facts. Eur. J. Phys. Rehabil. Med. 2016, 52, 560–574. [Google Scholar]
- Maetzler, W.; Domingos, J.; Srulijes, K.; Ferreira, J.J.; Bloem, B.R. Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov. Disord. 2013, 28, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
- Kessler, S.E.; Rainbow, M.J.; Lichtwark, G.A.; Cresswell, A.G.; D’Andrea, S.E.; Konow, N.; Kelly, L.A. A Direct Comparison of Biplanar Videoradiography and Optical Motion Capture for Foot and Ankle Kinematics. Front. Bioeng. Biotechnol. 2019, 7, 199. [Google Scholar] [CrossRef]
- Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Med. Open 2018, 4, 24. [Google Scholar] [CrossRef]
- Scataglini, S.; Paul, G. Digital Human Modelling and Posturography; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Scataglini, S.; Truijen, S. Critical Appraisal of Using Digital Human Model, Virtual Human, Human Digital Twin and Digital Twin; Springer Nature: Cham, Switzerland, 2023; pp. 154–158. [Google Scholar] [CrossRef]
- Scataglini, S.; Paul, G. From Greek Sculpture to the Digital Human Model—A History of “Human Equilibrium”; Academic Press: London, UK, 2019. [Google Scholar]
- Paul, G.; Scataglini, S. Open-Source Software to Create a Kinematic Model in Digital Human Modeling. DHM and Posturography; Academic Press: London, UK, 2019; pp. 201–213. [Google Scholar]
- Maynard, V.; Bakheit, A.M.; Oldham, J.; Freeman, J. Intra-rater and inter-rater reliability of gait measurements with CODA mpx30 motion analysis system. Gait Posture 2003, 17, 59–67. [Google Scholar] [CrossRef]
- McGinley, J.L.; Baker, R.; Wolfe, R.; Morris, M.E. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture 2009, 29, 360–369. [Google Scholar] [CrossRef] [PubMed]
- De Rosario, H.; Scataglini, S.; Basso, F.; Alemany, S.; Saeys, W.; Truijen, S. Applications of Using 4D Scanning Technologies in Biomechanics; Springer Nature: Cham, Switzerland, 2023; pp. 98–105. [Google Scholar]
- Scataglini, S.; Truijen, S. Overview of software and file exchange formats in 3D and 4D body shape scanning. In Proceedings of the 7th International Digital Human Modeling Symposium, Iowa City, IA, USA, 29–30 August 2022. [Google Scholar]
- Desmarais, Y.; Mottet, D.; Slangen, P.; Montesinos, P. A review of 3D human pose estimation algorithms for markerless motion capture. Comput. Vis. Image Underst. 2021, 212, 103275. [Google Scholar] [CrossRef]
- Buckley, E.; Mazzà, C.; McNeill, A. A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait Posture 2018, 60, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Cimolin, V.; Galli, M. Summary measures for clinical gait analysis: A literature review. Gait Posture 2014, 39, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Meeus, M.; Gebruers, N. Health Literacy from Reference to Review; ACCO: Seattle, WA, USA, 2016; ISBN 9789462927520. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Hahn, M.E. Comparison of lower extremity joint mechanics between healthy active young and middle age people in walking and running gait. Sci. Rep. 2019, 9, 5568. [Google Scholar] [CrossRef] [PubMed]
- Prinsen, C.A.C.; Mokkink, L.B.; Bouter, L.M.; Alonso, J.; Patrick, D.L.; de Vet, H.C.W.; Terwee, C.B. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual. Life Res. 2018, 27, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Mokkink, L.B.; de Vet, H.C.W.; Prinsen, C.A.C.; Patrick, D.L.; Alonso, J.; Bouter, L.M.; Terwee, C.B. COSMIN Risk of Bias checklist for systematic reviews of Patient-Reported Outcome Measures. Qual. Life Res. 2018, 27, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Terwee, C.B.; Prinsen, C.A.C.; Chiarotto, A.; Westerman, M.; Patrick, D.; Alonso, J.; Bouter, L.M.; de Vet, H.C.W.; Mokkink, L.B. COSMIN methodology for evaluating the content validity of patient-reported outcome measures: A Delphi study. Qual. Life Res. 2018, 27, 1159–1170. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Fleiss, J. The Design and Analysis of Clinical Experiments; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Clark, R.A.; Bower, K.J.; Mentiplay, B.F.; Paterson, K.; Pua, Y.H. Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. J. Biomech. 2013, 46, 2722–2725. [Google Scholar] [CrossRef]
- Arango Paredes, J.D.; Muñoz, B.; Agredo, W.; Ariza-Araújo, Y.; Orozco, J.L.; Navarro, A. A reliability assessment software using Kinect to complement the clinical evaluation of Parkinson’s disease. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6860–6863. [Google Scholar] [CrossRef]
- Eltoukhy, M.; Kuenze, C.; Oh, J.; Jacopetti, M.; Wooten, S.; Signorile, J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease. Med. Eng. Phys. 2017, 44, 1–7. [Google Scholar] [CrossRef]
- Eltoukhy, M.; Oh, J.; Kuenze, C.; Signorile, J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture 2017, 51, 77–83. [Google Scholar] [CrossRef]
- Ripic, Z.; Signorile, J.F.; Kuenze, C.; Eltoukhy, M. Concurrent validity of artificial intelligence-based markerless motion capture for over-ground gait analysis: A study of spatiotemporal parameters. J. Biomech. 2022, 143, 111278. [Google Scholar] [CrossRef] [PubMed]
- Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Pua, Y.H.; McGaw, R.; Heywood, S.; Clark, R.A. Gait assessment using the Microsoft Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J. Biomech. 2015, 48, 2166–2170. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadi, E.; Taati, B.; Mihailidis, A. Concurrent validity of the Microsoft Kinect for Windows v2 for measuring spatiotemporal gait parameters. Med. Eng. Phys. 2016, 38, 952–958. [Google Scholar] [CrossRef]
- Fosty, B.; Ben-Sadoun, G.; Sacco, G.; König, A.; Manera, V.; Foulon, P.; Brisswalter, J.; Robert, P.H.; Bremond, F. Accuracy and reliability of the RGB-D camera for measuring walking speed on a treadmill. Gait Posture 2016, 48, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Otte, K.; Kayser, B.; Mansow-Model, S.; Verrel, J.; Paul, F.; Brandt, A.U.; Schmitz-Hübsch, T. Accuracy and reliability of the Kinect version 2 for clinical measurement of motor function. PLoS ONE 2016, 11, e0166532. [Google Scholar] [CrossRef]
- Pfister, A.; West, A.M.; Bronner, S.; Noah, J.A. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J. Med. Eng. Technol. 2014, 38, 274–280. [Google Scholar] [CrossRef]
- Timmi, A.; Coates, G.; Fortin, K.; Ackland, D.; Bryant, A.L.; Gordon, I.; Pivonka, P. Accuracy of a novel marker tracking approach based on the low-cost Microsoft Kinect v2 sensor. Med. Eng. Phys. 2018, 59, 63–69. [Google Scholar] [CrossRef]
- Xu, X.; McGorry, R.W.; Chou, L.S.; Lin, J.H.; Chang, C.C. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking. Gait Posture 2015, 42, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Kanko, R.M.; Laende, E.K.; Davis, E.M.; Selbie, W.S.; Deluzio, K.J. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. J. Biomech. 2021, 127, 110665. [Google Scholar] [CrossRef] [PubMed]
- Kanko, R.M.; Laende, E.K.; Strutzenberger, G.; Brown, M.; Selbie, W.S.; DePaul, V.; Scott, S.H.; Deluzio, K.J. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. J. Biomech. 2021, 122, 110414. [Google Scholar] [CrossRef] [PubMed]
- Albert, J.A.; Owolabi, V.; Gebel, A.; Brahms, C.M.; Granacher, U.; Arnrich, B. Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study. Sensors 2020, 20, 5104. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Boas, M.D.C.; Choupina, H.M.P.; Rocha, A.P.; Fernandes, J.M.; Cunha, J.P.S. Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait. J. Biomech. 2019, 87, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Takimoto, H.; Yamasaki, T.; Higashi, A. Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment. J. Biomech. 2018, 71, 281–285. [Google Scholar] [CrossRef]
- Dubois, A.; Bresciani, J.P. Validation of an ambient system for the measurement of gait parameters. J. Biomech. 2018, 69, 175–180. [Google Scholar] [CrossRef]
- Müller, B.; Ilg, W.; Giese, M.A.; Ludolph, N. Validation of enhanced kinect sensor based motion capturing for gait assessment. PLoS ONE 2017, 12, e0175813. [Google Scholar] [CrossRef]
- Ruescas Nicolau, A.V.; De Rosario, H.; Basso Della-Vedova, F.; Parrilla Bernabé, E.; Juan, M.C.; López-Pascual, J. Accuracy of a 3D temporal scanning system for gait analysis: Comparative with a marker-based photogrammetry system. Gait Posture 2022, 97, 28–34. [Google Scholar] [CrossRef]
- Ma, Y.; Hart, R.; Sheng, B.; Zhang, Y. The validity of a dual Azure Kinect-based motion capture system for gait analysis: A preliminary study. In Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Auckland, New Zealand, 7–10 December 2020; pp. 1201–1206. [Google Scholar]
- Ripic, Z.; Nienhuis, M.; Signorile, J.F.; Best, T.M.; Jacobs, K.A.; Eltoukhy, M. A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait. J. Biomech. 2023, 159, 111793. [Google Scholar] [CrossRef]
- Cooper, H.M.; Hedges, L.V.; Valentine, J.C. The Handbook of Research Synthesis and Meta-Analysis; Russell Sage Foundation: New York, NY, USA, 2019. [Google Scholar]
- Fisher, R.A. On the ‘Probable Error’ of a Coefficient of Correlation Deduced from a Small Sample. Metron 1921, 1, 3–32. [Google Scholar]
- IBM SPSS Statistics for IBM SPSS Statistics for Macintosh, Version 28.0; IBM Corp: New York, NY, USA, 2022.
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Editors) Cochrane Handbook for Systematic Reviews of Interventions Version. 6.4 (Updated August 2023). Cochrane, 2023. Available online: www.training.cochrane.org/handbook (accessed on 5 October 2023).
- Mokkink, L.B.; Boers, M.; van der Vleuten, C.P.M.; Bouter, L.M.; Alonso, J.; Patrick, D.L.; de Vet, H.C.W.; Terwee, C.B. COSMIN Risk of Bias tool to assess the quality of studies on reliability or measurement error of outcome measurement instruments: A Delphi study. BMC Med. Res. Methodol. 2020, 20, 293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Evidence-Based Guideline Development in the Netherlands: The EBRO Platform [Internet]. 2004. Available online: https://pubmed.ncbi.nlm.nih.gov/15532326/ (accessed on 5 October 2023).
- Zeng, Z.; Liu, Y.; Hu, X.; Tang, M.; Wang, L. Validity and Reliability of Inertial Measurement Units on Lower Extremity Kinematics During Running: A Systematic Review and Meta-Analysis. Sports Med. Open 2022, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Springer, S.; Yogev Seligmann, G. Validity of the Kinect for Gait Assessment: A Focused Review. Sensors 2016, 16, 194. [Google Scholar] [CrossRef] [PubMed]
Database: PubMed | Search Strategy |
---|---|
P | (Adults OR 18 years OR elderly) |
AND | |
I | (Gait OR walking) |
AND | |
C | (3D marker-based motion analysis OR 3D body scanning OR 3D capture OR three-dimensional joint angles OR 3D temporal scanner OR 3 dimensional body scanning OR three dimensional body scanning OR dynamic 3D scanning OR 4D markerless motion analysis OR 4D whole body scan OR 3D scanning technique OR 4 dimensional body shape scanning OR Kinect OR Vicon OR marker motion capture systems OR markerless motion capture systems OR dynamic movement capture OR 4D capture OR dynamic anthropometry OR motion capture OR markerless motion capture OR stereophotogrammetry OR “body shape” OR “ body scan” OR optoelectronic device OR optoelectronic system OR human motion tracking algorithm OR dynamic movement tracking) |
AND | |
O | (Concurrent Validity OR Validity OR reliability OR accuracy OR landmark position error OR correlation OR Reproducibility of results [Mesh] OR comparison OR clustering high-dimensional data)) |
Database: Web of Science | Search Strategy |
---|---|
P | (ALL = (Adult OR Adults OR 18 years OR elderly) |
AND | |
I | ALL = (Gait OR walking) |
AND | |
C | ALL = (3D marker-based motion analysis OR 3D body scanning OR 3D capture OR three-dimensional joint angles OR 3D temporal scanner OR 3 dimensional body scanning OR three dimensional body scanning OR dynamic 3D scanning OR 4D markerless motion analysis OR 4D whole body scan OR 3D scanning technique OR 4 dimensional body shape scanning OR Kinect OR Vicon OR marker motion capture systems OR markerless motion capture systems OR dynamic movement capture OR 4D capture OR dynamic anthropometry OR motion capture OR markerless motion capture OR stereophotogrammetry OR “body shape” OR “body scan” OR optoelectronic device OR optoelectronic system OR human motion tracking algorithm OR dynamic movement tracking) |
AND | |
O | ALL= (Concurrent Validity OR Validity OR reliability OR accuracy OR landmark position error OR correlation OR Reproducibility of results OR comparison OR clustering high-dimensional data)) |
Inclusion | Exclusion |
---|---|
|
|
Study (year) | Reliability | Validity | Accuracy | Conclusion |
---|---|---|---|---|
Clark et al. [31] | X | X | D | |
Arango Paredes et al. [32] | X | I | ||
Eltoukhy et al. [33] | X | X | A | |
Eltoukhy et al. [34] | X | X | A | |
Ripic et al. [35] | X | X | A | |
Mentiplay et al. [36] | X | X | A | |
Dolatabadi et al. [37] | X | A | ||
Fosty et al. [38] | X | X | D | |
Otte et al. [39] | X | A | ||
Pfister et al. [40] | X | X | A | |
Timmi et al. [41] | X | A | ||
Xu et al. [42] | X | X | V | |
Kanko et al. [43] | X | A | ||
Kanko et al. [44] | X | A | ||
Albert et al. [45] | X | X | D | |
Vilas-Boas et al. [46] | X | A | ||
Tanaka et al. [47] | X | A | ||
Dubois & Bresciani [48] | X | D | ||
Muller et al. [49] | X | A | ||
Ruescas Nicolau et al. [50] | X | A | ||
Ma et al. [51] | X | D | ||
Ripic et al. [52] | X | X | A | |
Arango Paredes et al. [32] | X | I | ||
Eltoukhy et al. [33] | X | X | A | |
Eltoukhy et al. [34] | X | X | A | |
Fosty et al. [38] | X | X | D | |
Otte et al. [39] | X | A | ||
Mentiplay et al. [36] | X | X | A | |
Dolatabadi et al. [37] | X | A | ||
Pfister et al. [40] | X | X | A | |
Timmi et al. [41] | X | A | ||
Xu et al. [42] | X | X | V | |
Kanko et al. [43] | X | A | ||
Kanko et al. [44] | X | A | ||
Albert et al. [45] | X | X | D | |
Vilas-Boas et al. [46] | X | A | ||
Tanaka et al. [47] | X | A | ||
Clark et al. [31] | X | X | D | |
Dubois & Bresciani [48] | X | D | ||
Muller et al. [49] | X | A | ||
Ripic et al. [35] | X | X | A | |
Ripic et al. [52] | X | X | A | |
Ruescas Nicolau et al. [50] | X | A | ||
Ma et al. [51] | X | D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scataglini, S.; Abts, E.; Van Bocxlaer, C.; Van den Bussche, M.; Meletani, S.; Truijen, S. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Sensors 2024, 24, 3686. https://doi.org/10.3390/s24113686
Scataglini S, Abts E, Van Bocxlaer C, Van den Bussche M, Meletani S, Truijen S. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Sensors. 2024; 24(11):3686. https://doi.org/10.3390/s24113686
Chicago/Turabian StyleScataglini, Sofia, Eveline Abts, Cas Van Bocxlaer, Maxime Van den Bussche, Sara Meletani, and Steven Truijen. 2024. "Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis" Sensors 24, no. 11: 3686. https://doi.org/10.3390/s24113686
APA StyleScataglini, S., Abts, E., Van Bocxlaer, C., Van den Bussche, M., Meletani, S., & Truijen, S. (2024). Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Sensors, 24(11), 3686. https://doi.org/10.3390/s24113686