Charge-Coupled Frequency Response Multispectral Inversion Network-Based Detection Method of Oil Contamination on Airport Runway
Abstract
:1. Introduction
- An innovative airport runway oil spill detection method that effectively overcomes the limitations of traditional RGB image detection in distinguishing oil spills from water stains by spectrally reconstructing RGB images into multispectral images, thereby achieving high-precision oil spill detection, is proposed.
- The high-performance MST++ spectral reconstruction network model is adopted in combination with the Fast R-CNN oil spill detection model, resulting in significant improvements in accuracy and completeness in oil spill detection. Compared with directly utilizing RGB images, the proposed method increases Intersection over Union (IOU) by 5%, while detection accuracy and completeness are enhanced by 25.3% and 26.5%, respectively. Moreover, successful detection is achieved in various scenarios.
- The proposed method offers higher practicality and convenience. By capturing images with ordinary RGB cameras and then generating multispectral images through spectral reconstruction for detection, the method significantly improves detection accuracy while greatly enhancing equipment portability, making it more suitable for the practical application requirements of airport runways.
2. Materials and Methods
2.1. Preparation of the Dataset
2.1.1. Characteristics of Oil Contamination
2.1.2. Data Collection
2.1.3. Processing of Datasets
2.2. Spectral Reconstruction Methods
2.2.1. Sampling Imaging Principle
2.2.2. Acquisition of Camera Spectral Response Curves
2.3. Spectral Reconstruction and Runway Oil Detection Framework
2.3.1. Spectral Reconstruction Neural Network
2.3.2. Neural Network for Runway Oil Detection
2.4. Model Training
2.5. Evaluation Indicators
3. Experiments and Discussions
3.1. Spectral Reconstruction Quality Assessment
3.2. Comparison of Oil Detection Models in Different Scenarios
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, G.; Wang, Y. Identification and Evaluation of Oil or Fuel Contaminants in Airport Asphalt Pavements. J. Mater. Civ. Eng. 2022, 34, 04022265. [Google Scholar] [CrossRef]
- John, R.C.; Essien, J.P.; Akpan, S.B.; Okpokwasilli, G.C. Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at Ibeno, Nigeria. Bull. Environ. Contam. Toxicol. 2012, 88, 1014–1019. [Google Scholar] [CrossRef]
- Michel, J.; Fingas, M. Oil Spills: Causes, consequences, prevention, and countermeasures. In Fossil Fuels: Current Status and Future Directions; World Scientific Publishing Company: Singapore, 2016; pp. 159–201. [Google Scholar]
- Ghorbani, Z.; Behzadan, A.H. Monitoring offshore oil pollution using multi-class convolutional neural networks. Environ. Pollut. 2021, 289, 117884. [Google Scholar] [CrossRef]
- Ozigis, M.S.; Kaduk, J.D.; Jarvis, C.H.; da Conceição Bispo, P.; Balzter, H. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods. Environ. Pollut. 2020, 256, 113360. [Google Scholar] [CrossRef]
- Liu, X.; Gherbi, A.; Li, W.; Wei, Z.; Cheriet, M. TaijiGNN: A new cycle-consistent generative neural network for high-quality bidirectional transformation between RGB and multispectral domains. Sensors 2021, 21, 5394. [Google Scholar] [CrossRef]
- He, Y.; Jia, Z.; Yang, J.; Kasabov, N.K. Multispectral image change detection based on single-band slow feature analysis. Remote Sens. 2021, 13, 2969. [Google Scholar] [CrossRef]
- Bozsányi, S.; Farkas, K.; Bánvölgyi, A.; Lőrincz, K.; Fésűs, L.; Anker, P.; Zakariás, S.; Jobbágy, A.; Lihacova, I.; Lihachev, A.; et al. Quantitative Multispectral Imaging Differentiates Melanoma from Seborrheic Keratosis. Diagnostics 2021, 11, 1315. [Google Scholar] [CrossRef]
- Kim, S.; Bae, S.H.; Kim, M.K.; Kang, L.H. Deep Learning Performance Comparison Using Multispectral Images and Vegetation Index for Farmland Classification. Int. J. Aeronaut. Space Sci. 2023, 24, 1533–1545. [Google Scholar] [CrossRef]
- Wei, Y.; He, Y.; Li, X. Tea moisture content detection with multispectral and depth images. Comput. Electron. Agric. 2021, 183, 106082. [Google Scholar] [CrossRef]
- Tirelli, P.; Marchi, M.; Calcante, A.; Vitalini, S.; Iriti, M.; Borghese, N.A.; Oberti, R. Multispectral image analysis for grapevine diseases automatic detection in field conditions. In Proceedings of the International Conference of Agricultural Engineering CIGR-AgEng, Valencia, Spain, 8–12 July 2012; pp. 8–12. [Google Scholar]
- Pronti, L.; Ferrara, P.; Uccheddu, F.; Pelagotti, A.; Piva, A. Identification of pictorial materials by means of optimized multispectral reflectance image processing. In Proceedings of the 2015 IEEE International Workshop on Information Forensics and Security (WIFS), Rome, Italy, 16–19 November 2015; pp. 1–6. [Google Scholar]
- Liu, S.; Chi, M.; Zou, Y.; Samat, A.; Benediktsson, J.A.; Plaza, A. Oil spill detection via multitemporal optical remote sensing images: A change detection perspective. IEEE Geosci. Remote Sens. Lett. 2017, 14, 324–328. [Google Scholar] [CrossRef]
- Cao, X.; Yue, T.; Lin, X.; Lin, S.; Yuan, X.; Dai, Q.; Brady, D.J. Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world. IEEE Signal Process Mag. 2016, 33, 95–108. [Google Scholar] [CrossRef]
- Lai, Q.; Xie, Y.; Guo, P.; Wang, M.; Wang, C.; Tan, J. Multi-spectral bidirectional reflectance characteristics of crude oils. Infrared Phys. Technol. 2020, 109, 103420. [Google Scholar] [CrossRef]
- Bousefsaf, F.; Tamaazousti, M.; Said, S.H.; Michel, R. Image completion using multispectral imaging. IET Image Proc. 2018, 12, 1164–1174. [Google Scholar] [CrossRef]
- Fu, Y.; Zheng, Y.; Zhang, L.; Huang, H. Spectral reflectance recovery from a single RGB image. IEEE Trans. Comput. Imaging 2018, 4, 382–394. [Google Scholar] [CrossRef]
- Gao, X.; Wang, T.; Yang, J.; Tao, J.; Qiu, Y.; Meng, Y.; Li, Y. Deep-learning-based hyperspectral imaging through a RGB camera. J. Electron. Imaging 2021, 30, 053014. [Google Scholar] [CrossRef]
- Tran, V.L.; Lin, H.Y. A structured light RGB-D camera system for accurate depth measurement. Int. J. Opt. 2018, 2018, 8659847. [Google Scholar] [CrossRef]
- Garcia, J.E.; Girard, M.B.; Kasumovic, M.; Petersen, P.; Wilksch, P.A.; Dyer, A.G. Differentiating biological colours with few and many sensors: Spectral reconstruction with RGB and hyperspectral cameras. PLoS ONE 2015, 10, e0125817. [Google Scholar] [CrossRef]
- Ulloa, C.C.; Garrido, L.; Del Cerro, J.; Barrientos, A. Autonomous victim detection system based on deep learning and multispectral imagery. Mach. Learn. Sci. Technol. 2023, 4, 015018. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Feng, W.; Xu, J. Deep learning classification by ResNet-18 based on the real spectral dataset from multispectral remote sensing images. Remote Sens. 2022, 14, 4883. [Google Scholar] [CrossRef]
- Jameel, S.M.; Hashmani, M.A.; Rehman, M.; Budiman, A. Adaptive CNN ensemble for complex multispectral image analysis. Complexity 2020, 2020, 8361989. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Qiu, J.; Chen, G.; Liu, H.; Liao, B.; Yao, X. Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chem. Eng. J. 2021, 420, 129845. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Xu, Z.; Hua, Z. BSFormer: Transformer-Based Reconstruction Network for Hyperspectral Band Selection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Cai, Y.; Lin, J.; Lin, Z.; Wang, H.; Zhang, Y.; Pfister, H.; Van Gool, L. Mst++: Multi-stage spectral-wise transformer for efficient spectral reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 745–755. [Google Scholar]
- Chen, X.; Gupta, A. An implementation of faster rcnn with study for region sampling. arXiv 2017, arXiv:1702.02138. [Google Scholar]
- Arad, B.; Timofte, R.; Yahel, R.; Morag, N.; Bernat, A.; Cai, Y.; Lin, J.; Lin, Z.; Wang, H.; Zhang, Y.; et al. Ntire 2022 spectral recovery challenge and data set. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 863–881. [Google Scholar]
- Xu, Y.; Goodacre, R. On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2018, 2, 249–262. [Google Scholar] [CrossRef]
- Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Mu, K.; Zhang, Z.; Qian, Y.; Liu, S.; Sun, M.; Qi, R. SRT: A spectral reconstruction network for GF-1 PMS data based on transformer and ResNet. Remote Sens. 2022, 14, 3163. [Google Scholar] [CrossRef]
- Zou, C.; Wei, M. Cluster-based deep convolutional networks for spectral reconstruction from RGB images. Neurocomputing 2021, 464, 342–351. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J. Double ghost convolution attention mechanism network: A framework for hyperspectral reconstruction of a single RGB image. Sensors 2021, 21, 666. [Google Scholar] [CrossRef]
- Zhao, J.; Kumar, A.; Banoth, B.N.; Marathi, B.; Rajalakshmi, P.; Rewald, B.; Guo, W. Deep-learning-based multispectral image reconstruction from single natural color RGB image—Enhancing UAV-based phenotyping. Remote Sens. 2022, 14, 1272. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Fang, F.; Li, L.; Zhu, H.; Lim, J.H. Combining faster R-CNN and model-driven clustering for elongated object detection. IEEE Trans. Image Process. 2019, 29, 2052–2065. [Google Scholar] [CrossRef]
Modeling | Loss | MRAE | RMSE |
---|---|---|---|
HSCNN+ | 0.2528 | 0.1727 | 0.0215 |
HRNET | 0.2519 | 0.1685 | 0.0204 |
MIRNET | 0.2484 | 0.1945 | 0.0227 |
MST++ | 0.2415 | 0.1595 | 0.0194 |
Type of Oil Contamination on Airport Pavements | HSI Image Prediction IOU Mean | RGB Image Prediction IOU Average |
---|---|---|
Aviation kerosene | 0.855 | 0.825 |
Engine oil | 0.816 | 0.814 |
Lubricating oil | 0.921 | 0.842 |
Aggregate | 0.864 | 0.827 |
Airport Pavement Grease Category | HSI Accuracy Rate | HSI Detection Rate | RGB Check Rate | RGB Detection Rate |
---|---|---|---|---|
Aviation kerosene | 0.856 | 0.826 | 0.567 | 0.574 |
Engine oil | 0.825 | 0.855 | 0.549 | 0.560 |
Lubricating oil | 0.932 | 0.964 | 0.740 | 0.960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Luo, Z.; Wang, L.; Li, X.; Xing, Z. Charge-Coupled Frequency Response Multispectral Inversion Network-Based Detection Method of Oil Contamination on Airport Runway. Sensors 2024, 24, 3716. https://doi.org/10.3390/s24123716
Zhao S, Luo Z, Wang L, Li X, Xing Z. Charge-Coupled Frequency Response Multispectral Inversion Network-Based Detection Method of Oil Contamination on Airport Runway. Sensors. 2024; 24(12):3716. https://doi.org/10.3390/s24123716
Chicago/Turabian StyleZhao, Shuanfeng, Zhijian Luo, Li Wang, Xiaoyu Li, and Zhizhong Xing. 2024. "Charge-Coupled Frequency Response Multispectral Inversion Network-Based Detection Method of Oil Contamination on Airport Runway" Sensors 24, no. 12: 3716. https://doi.org/10.3390/s24123716
APA StyleZhao, S., Luo, Z., Wang, L., Li, X., & Xing, Z. (2024). Charge-Coupled Frequency Response Multispectral Inversion Network-Based Detection Method of Oil Contamination on Airport Runway. Sensors, 24(12), 3716. https://doi.org/10.3390/s24123716