Consensus-Based Formation Control with Time Synchronization for a Decentralized Group of Mobile Robots
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. The Kinematics and Dynamics Model of Robots
3.2. Synchronous Control Algorithm for a Decentralized Group of Robots
4. Experiments and Evaluation
- Comparison of the reference trajectory with the simulation trajectory and the real trajectory;
- The distance error between the robots determined from the relationship:
- Simulation and real velocities.
4.1. Simulation Study of Synchronous Movement of a Group along a Circular Trajectory
- Robot 1: ;
- Robot 2: ;
- Robot 3: .
4.2. Laboratory Tests of Trajectory Tracking by a Group of Robots with a Decentralized Structure
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, R.; Carey, K.; Abruzzo, B.; Korpela, C. What is A Robot Swarm: A Definition for Swarming Robotics. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 74–81. [Google Scholar] [CrossRef]
- Panasiuk, J.; Siwek, M.; Kaczmarek, W.; Borys, S.; Prusaczyk, P. The concept of using the mobile robot for telemechanical wires installation in pipelines. AIP Conf. Proc. 2018, 2029. [Google Scholar] [CrossRef]
- Lewis, F.L.; Zhang, H.; Hengster-Movric, K.; Das, A. Cooperative Control of Multi-Agent Systems; Springer: London, UK, 2014. [Google Scholar] [CrossRef]
- Petitprez, E.; Guérin, F.; Guinand, F.; Germain, F.; Kerthe, N. Decentralized Coordination of a Multi-UAV System for Spatial Planar Shape Formations. Sensors 2023, 23, 9553. [Google Scholar] [CrossRef] [PubMed]
- Kotsinis, D.; Bechlioulis, C.P. Decentralized Navigation with Optimality for Multiple Holonomic Agents in Simply Connected Workspaces. Sensors 2024, 24, 3134. [Google Scholar] [CrossRef] [PubMed]
- Besseghieur, K.L.; Trębiński, R.; Kaczmarek, W.; Panasiuk, J. From Trajectory Tracking Control to Leader-Follower Formation Control. Cybern. Syst. 2020, 51, 339–356. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, M.; Huang, Y.; Wang, L. Formation Control of Heterogeneous Multi-Robot Systems. IFAC Proc. Vol. 2008, 41, 6596–6601. [Google Scholar] [CrossRef]
- Wei, W.; Huilin, T. Reconfigurable multi-robot system kinematic modeling and motion planning. In Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 21–23 June 2011; pp. 1672–1677. [Google Scholar] [CrossRef]
- Rykała, Ł.; Typiak, A.; Typiak, R.; Rykała, M. Application of Smoothing Spline in Determining the Unmanned Ground Vehicles Route Based on Ultra-Wideband Distance Measurements. Sensors 2022, 22, 8334. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dong, C.; He, S.; Dai, S. Adaptive optimal formation control for unmanned surface vehicles with guaranteed performance using actor-critic learning architecture. Int. J. Robust Nonlinear Control 2023, 33, 4504–4522. [Google Scholar] [CrossRef]
- Zhen, Q.; Wan, L.; Li, Y.; Jiang, D. Formation control of a multi-AUVs system based on virtual structure and artificial potential field on SE(3). Ocean. Eng. 2022, 253, 111148. [Google Scholar] [CrossRef]
- Chen, X.; Huang, F.; Zhang, Y.; Chen, Z.; Liu, S.; Nie, Y.; Tang, J.; Zhu, S. A Novel Virtual-Structure Formation Control Design for Mobile Robots with Obstacle Avoidance. Appl. Sci. 2020, 10, 5807. [Google Scholar] [CrossRef]
- Siwek, M.; Besseghieur, K.; Baranowski, L. The effects of the swarm configuration and the obstacles placement on control signals transmission delays in decentralized ROS-embedded group of mobile robots. AIP Conf. Proc. 2018, 2029, 20069. [Google Scholar] [CrossRef]
- Cruz, C.D.L.; Carelli, R. Dynamic model based formation control and obstacle avoidance of multi-robot systems. Robotica 2008, 26, 345–356. [Google Scholar] [CrossRef]
- Dong, W.; Farrell, J.A. Cooperative Control of Multiple Nonholonomic Mobile Agents. IEEE Trans. Autom. Control 2008, 53, 1434–1448. [Google Scholar] [CrossRef]
- Ou, M.; Du, H.; Li, S. Finite-time formation control of multiple nonholonomic mobile robots. Int. J. Robust Nonlinear Control 2014, 24, 140–165. [Google Scholar] [CrossRef]
- Liu, S.; Sun, D.; Zhu, C. Motion planning of multirobot formation. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 3848–3853. [Google Scholar] [CrossRef]
- Liu, S.; Sun, D.; Zhu, C.; Shang, W. A dynamic priority strategy in decentralized motion planning for formation forming of multiple mobile robots. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 3774–3779. [Google Scholar] [CrossRef]
- Peng, Z.; Wen, G.; Yang, S.; Rahmani, A. Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network. Nonlinear Dyn. 2016, 86, 605–622. [Google Scholar] [CrossRef]
- Nguyen, K.; Dang, V.T.; Pham, D.D.; Dao, P.N. Formation control scheme with reinforcement learning strategy for a group of multiple surface vehicles. Int. J. Robust Nonlinear Control 2024, 34, 2252–2279. [Google Scholar] [CrossRef]
- Mehrjerdi, H.; Ghommam, J.; Saad, M. Nonlinear coordination control for a group of mobile robots using a virtual structure. Mechatronics 2011, 21, 1147–1155. [Google Scholar] [CrossRef]
- Liu, L.; Yu, J.; Ji, J.; Miao, Z.; Zhou, J. Cooperative adaptive consensus tracking for multiple nonholonomic mobile robots. Int. J. Syst. Sci. 2019, 50, 1556–1567. [Google Scholar] [CrossRef]
- Ou, M.; Sun, H.; Gu, S.; Zhang, Y. Distributed finite-time trajectory tracking control for multiple nonholonomic mobile robots with uncertainties and external disturbances. Int. J. Syst. Sci. 2017, 48, 3233–3245. [Google Scholar] [CrossRef]
- Hua, C.; Sun, X.; You, X.; Guan, X. Finite-time consensus control for second-order multi-agent systems without velocity measurements. Int. J. Syst. Sci. 2017, 48, 337–346. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Z.; Wang, D.; Liu, D.; Yan, P.; Wei, Q. Neural-Network-Based Distributed Adaptive Robust Control for a Class of Nonlinear Multiagent Systems with Time Delays and External Noises. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 750–758. [Google Scholar] [CrossRef]
- Zhang, R.; Chi, R.; Hou, Z. Consensus tracking of multi-agent systems with time-delays using adaptive iterative learning control. In Proceedings of the 2017 6th Data Driven Control and Learning Systems (DDCLS), Chongqing, China, 26–27 May 2017; pp. 281–285. [Google Scholar] [CrossRef]
- Fiengo, G.; Lui, D.G.; Petrillo, A.; Santini, S. Distributed robust output consensus for linear multi-agent systems with input time-varying delays and parameter uncertainties. IET Control. Theory Appl. 2019, 13, 203–212. [Google Scholar] [CrossRef]
- Siwek, M.; Panasiuk, J.; Baranowski, L.; Kaczmarek, W.; Prusaczyk, P.; Borys, S. Identification of Differential Drive Robot Dynamic Model Parameters. Materials 2023, 16, 683. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.N.; Sarcinelli-Filho, M.; Carelli, R. A Velocity-Based Dynamic Model and Its Properties for Differential Drive Mobile Robots. J. Intell. Robot. Syst. 2017, 85, 277–292. [Google Scholar] [CrossRef]
- Chaimowicz, L.; Kumar, V.; Campos, M.F.M. A Paradigm for Dynamic Coordination of Multiple Robots. Auton. Robot. 2004, 17, 7–21. [Google Scholar] [CrossRef]
- Wan, W.; Shi, B.; Wang, Z.; Fukui, R. Multirobot Object Transport via Robust Caging. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 270–280. [Google Scholar] [CrossRef]
- Uzunovic, T.; Sabanovic, A. Formation control of differential-drive mobile robots in the framework of functionally related systems. In Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 2620–2625. [Google Scholar] [CrossRef]
- Plathottam, S.J.; Ranganathan, P. Next generation distributed and networked autonomous vehicles: Review. In Proceedings of the 2018 10th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 3–7 January 2018; pp. 577–582. [Google Scholar] [CrossRef]
- Ren, W.; Sorensen, N. Distributed coordination architecture for multi-robot formation control. Robot. Auton. Syst. 2008, 56, 324–333. [Google Scholar] [CrossRef]
- Komareji, M.; Shang, Y.; Bouffanais, R. Consensus in topologically interacting swarms under communication constraints and time-delays. Nonlinear Dyn. 2018, 93, 1287–1300. [Google Scholar] [CrossRef]
- Cai, N.; Diao, C.; Khan, M.J. A Novel Clustering Method Based on Quasi-Consensus Motions of Dynamical Multiagent Systems. Complexity 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Autefage, V.; Chaumette, S.; Magoni, D. Comparison of time synchronization techniques in a distributed collaborative swarm system. In Proceedings of the 2015 European Conference on Networks and Communications (EuCNC), Paris, France, 29 June–2 July 2015; pp. 455–459. [Google Scholar] [CrossRef]
- Klancar, G.; Matko, D.; Blazic, S. Mobile Robot Control on a Reference Path. In Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, Limassol, Cyprus, 27–29 June 2005; pp. 1343–1348. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siwek, M. Consensus-Based Formation Control with Time Synchronization for a Decentralized Group of Mobile Robots. Sensors 2024, 24, 3717. https://doi.org/10.3390/s24123717
Siwek M. Consensus-Based Formation Control with Time Synchronization for a Decentralized Group of Mobile Robots. Sensors. 2024; 24(12):3717. https://doi.org/10.3390/s24123717
Chicago/Turabian StyleSiwek, Michał. 2024. "Consensus-Based Formation Control with Time Synchronization for a Decentralized Group of Mobile Robots" Sensors 24, no. 12: 3717. https://doi.org/10.3390/s24123717
APA StyleSiwek, M. (2024). Consensus-Based Formation Control with Time Synchronization for a Decentralized Group of Mobile Robots. Sensors, 24(12), 3717. https://doi.org/10.3390/s24123717