Terahertz Sensing of L-Valine and L-Phenylalanine Solutions
Abstract
:1. Introduction
2. Simulation Design and Experimental Methods
3. Results and Discussion
3.1. Simulation Analysis and Characterization of the Metasurface
3.2. Selection of Different Volume Ratios of Water–Mixed Glycerol Solvent
3.3. Sensing Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryan, P.J.; Riechman, S.E.; Fluckey, J.D.; Wu, G.Y. Interorgan Metabolism of Amino Acids in Human Health and Disease. In Advances in Experimental Medicine and Biology; Springer International Publishing AG: Cham, Switzerland, 2021; Volume 1332, pp. 129–149. [Google Scholar]
- Butts, C.A.; Monro, J.A.; Moughan, P.J. In vitro determination of dietary protein and amino acid digestibility for humans. Brit. J. Nutr. 2012, 108, S282–S287. [Google Scholar] [CrossRef] [PubMed]
- Soeters, P.B.; van de Poll, M.C.G.; van Gemert, W.G.; Dejong, C.H.C. Amino acid adequacy in pathophysiological states. J. Nutr. 2003, 134, 1575S–1582S. [Google Scholar] [CrossRef] [PubMed]
- Fujii, N. D-amino acid in elderly tissues. Biol. Pharm. Bull. 2005, 28, 1585–1589. [Google Scholar] [CrossRef] [PubMed]
- Kamei, Y.; Hatazawa, Y.; Uchitomi, R.; Yoshimura, R.; Miura, S. Regulation of Skeletal Muscle Function by Amino Acids. Nutrients 2020, 12, 261. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Liu, D.; Masuya, D.; Nakashima, T.; Kameyama, K.; Ishikawa, S.; Ueno, M.; Haba, R.; Yokomise, H. Clinical application of biological markers for treatments of resectable non-small-cell lung cancers. Brit. J. Cancer 2005, 92, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Sahin, F.; Aslan, A.F. Relationship between Inflammatory and Biological Markers and Lung Cancer. J. Clin. Med. 2018, 7, 160. [Google Scholar] [CrossRef]
- Jo, M.S.; Choi, O.H.; Suh, D.S.; Yun, M.S.; Kim, S.J.; Kim, G.H.; Jeon, H.N. Correlation between Expression of Biological Markers and [18F] Fluorodeoxyglucose Uptake in Endometrial Cancer. Oncol. Res. Treat 2014, 37, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Geka, G.; Kanioura, A.; Likodimos, V.; Gardelis, S.; Papanikolaou, N.; Kakabakos, S.; Petrou, P. SERS Immunosensors for Cancer Markers Detection. Materials 2023, 16, 3733. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Han, P.Y.; Zhang, X.C.; Zhang, C.L.; Zhao, Y.J. Temperature Dependent Terahertz Spectroscopy of Allopurinol. J. Infrared. Millim. Terahertz Waves 2009, 30, 461–467. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Xu, Q.; Xia, L.B.; Li, Y.F.; Gu, J.Q.; Tian, Z.; Ouyang, C.M.; Han, J.G.; Zhang, W.L. Terahertz surface plasmonic waves: A review. Adv. Photonics 2020, 2, 014001. [Google Scholar] [CrossRef]
- Crowe, T.W.; Globus, T.; Woolard, D.L.; Hesler, J.L. Terahertz sources and detectors and their application to biological sensing. Philos. Trans. R. Soc. A 2004, 362, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Huang, J.L.; Luo, J.; Yang, Z.F.; Wang, L.P.; Wu, X.; Zang, X.F.; Yu, C.; Gu, M.; Hu, Q.; et al. Three-step one-way model in terahertz biomedical detection. PhotoniX 2021, 2, 12. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y.K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130. [Google Scholar] [CrossRef]
- Zaytsev, K.I.; Dolganova, I.N.; Chernomyrdin, N.V.; Katyba, G.M.; Gavdush, A.A.; Cherkasova, O.P.; Komandin, G.A.; Shchedrina, M.A.; Khodan, A.N.; Ponomarev, D.S.; et al. The progress and perspectives of terahertz technology for diagnosis of neoplasms: A review. J. Opt. 2020, 22, 013001. [Google Scholar] [CrossRef]
- Olivieri, L.; Gongora, J.S.T.; Peters, L.; Cecconi, V.; Cutrona, A.; Tunesi, J.; Tucker, R.; Pasquazi, A.; Peccianti, M. Hyperspectral terahertz microscopy via nonlinear ghost imaging. Optica 2020, 7, 186–191. [Google Scholar] [CrossRef]
- Zheng, G.X.; Mühlenbernd, H.; Kenney, M.; Li, G.X.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light-Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Liang, Y.; Koshelev, K.; Zhang, F.C.; Lin, H.; Lin, S.R.; Wu, J.Y.; Jia, B.H.; Kivshar, Y. Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef]
- Dorrah, A.H.; Rubin, N.A.; Zaidi, A.; Tamagnone, M.; Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics 2021, 15, 287–296. [Google Scholar] [CrossRef]
- Wang, L.L. Microwave Sensors for Breast Cancer Detection. Sensors 2018, 18, 655. [Google Scholar] [CrossRef]
- Dai, L.; Zhao, X.; Guo, J.C.; Feng, S.L.; Fu, Y.S.; Kang, Y.J.; Guo, J.H. Microfludics-based microwave sensor. Sens. Actuators A Phys. 2020, 309, 111910. [Google Scholar] [CrossRef]
- Zhang, J.; Mu, N.; Liu, L.H.; Xie, J.H.; Feng, H.; Yao, J.Q.; Chen, T.N.; Zhu, W.R. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens. Bioelectron. 2021, 185, 113241. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.T.; Xu, X.C.; Lin, Y.S. Tunable Terahertz Metamaterial with Electromagnetically Induced Transparency Characteristic for Sensing Application. Nanomaterials 2021, 11, 2175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, S.Y.; Qin, J.Y. Tunable Fano Resonance and Enhanced Sensing in Terahertz Metamaterial. Front. Phys. 2021, 8, 605125. [Google Scholar] [CrossRef]
- Leng, J.; Peng, J.; Jin, A.; Cao, D.; Liu, D.J.; He, X.Y.; Lin, F.T.; Liu, F. Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol. 2022, 146, 107570. [Google Scholar] [CrossRef]
- Cheng, R.J.; Xu, L.; Yu, X.; Zou, L.E.; Shen, Y.; Deng, X.H. High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces. Opt. Commun. 2020, 473, 125850. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, H.W.; Yan, X.; Liang, L.J.; Wei, D.Q.; Wang, M.; Yang, Q.L.; Yao, J.Q. Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency. Opt. Mater. Express 2018, 8, 659–667. [Google Scholar] [CrossRef]
- Chen, M.; Singh, L.; Xu, N.N.; Singh, R.; Zhang, W.L.; Xie, L.J. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Opt. Express 2017, 13, 14089–14097. [Google Scholar] [CrossRef]
- Forouzeshfard, M.R.; Ghafari, S.; Vafapour, Z. Solute concentration sensing in two aqueous solution using an optical metamaterial sensor. J. Lumin. 2021, 230, 117734. [Google Scholar] [CrossRef]
- Yang, Y.P.; Xu, D.Q.; Zhang, W.L. High-sensitivity and label-free identification of a transgenic genome using a terahertz meta-biosensor. Opt. Express 2018, 26, 31589–31598. [Google Scholar] [CrossRef]
- Liu, W.T.; Hu, F.R.; Lin, S.J.; Zeng, L.Z.; Jiang, M.Z.; Zhang, L.H.; Zou, Y.C. High Sensitive and Specific Detection of SCCA via Halloysite Nanotube Modified Terahertz Metasurface Sensor. IEEE Sens. J. 2023, 23, 6728–6733. [Google Scholar] [CrossRef]
- Zhao, R.; Ye, Y.X.; Dai, Z.J.; Mu, T.L.; Ren, X.D. Research on specific identification method of substances through terahertz metamaterial sensors. Results Phys. 2022, 43, 106055. [Google Scholar] [CrossRef]
- Meng, D.; Liu, J.; Chen, W.; Cheng, Y.Y.; You, K.W.; Fan, Z.C.; Ye, Q.B.; Huang, P.H.; Chen, Y.S. Study on the enhancement mechanism of terahertz molecular fingerprint sensing. Results Phys. 2022, 39, 105766. [Google Scholar] [CrossRef]
- Yan, X.; Yang, M.S.; Zhang, Z.; Liang, L.J.; Wei, D.Q.; Wang, M.; Zhang, M.J.; Wang, T.; Liu, L.H.; Xie, J.H.; et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron. 2019, 126, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Han, Z.H.; Du, Y.; Qin, J.Y. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics 2021, 10, 1295–1307. [Google Scholar] [CrossRef]
- Zidan, S.M.; Eleowa, S.A.; Nasef, M.A.; Abd-Almoktader, M.A.; Elbatawy, A.M.; Borhamy, A.G.; Aboliela, M.A.; Ali, A.M.; Algamal, M.R. Maximizing the safety of glycerol preserved human amniotic membrane as a biological dressing. Burns 2015, 41, 1498–1503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yao, D.Q.; Xia, Y.; Zhou, F.; Zhang, Q.; Wang, Q.; Qin, A.; Zhao, J.; Li, D.A.F.; Li, Y.; et al. The structural basis for glycerol permeation by human AQP7. Sci. Bull. 2021, 66, 1550–1558. [Google Scholar] [CrossRef]
- Liang, W.L.; Zuo, J.; Zhou, Q.L.; Zhang, C.L. Quantitative determination of glycerol concentration in aqueous glycerol solutions by metamaterial-based terahertz spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120812. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, J.; Zhou, X.; Hao, J.; Zhao, H.; An, M.; Zhang, Y.; Zhao, G. Terahertz Sensing of L-Valine and L-Phenylalanine Solutions. Sensors 2024, 24, 3798. https://doi.org/10.3390/s24123798
Shu J, Zhou X, Hao J, Zhao H, An M, Zhang Y, Zhao G. Terahertz Sensing of L-Valine and L-Phenylalanine Solutions. Sensors. 2024; 24(12):3798. https://doi.org/10.3390/s24123798
Chicago/Turabian StyleShu, Jingyi, Xinli Zhou, Jixuan Hao, Haochen Zhao, Mingming An, Yichen Zhang, and Guozhong Zhao. 2024. "Terahertz Sensing of L-Valine and L-Phenylalanine Solutions" Sensors 24, no. 12: 3798. https://doi.org/10.3390/s24123798
APA StyleShu, J., Zhou, X., Hao, J., Zhao, H., An, M., Zhang, Y., & Zhao, G. (2024). Terahertz Sensing of L-Valine and L-Phenylalanine Solutions. Sensors, 24(12), 3798. https://doi.org/10.3390/s24123798