Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer
Abstract
:1. Introduction
2. Splitter-Based Sensor System
2.1. Splitter-Based Sensing Principle
2.2. Experimental Setup
2.3. Splitter-Based Sensor Production Steps
3. Materials and Methods
3.1. Chemicals
3.2. MIP Prepolymeric Mixture
3.3. Measurement Protocol
4. Experimental Results
4.1. MIP-Analyte Binding Tests
4.2. Selectivity Test
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Estrela, P.; Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Baird, C.L.; Myszka, D.G. Current and Emerging Commercial Optical Biosensors. J. Mol. Recognit. 2001, 14, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.; Shankar, P.M.; Mutharasan, R. A Review of Fiber-Optic Biosensors. Sens. Actuators B Chem. 2007, 125, 688–703. [Google Scholar] [CrossRef]
- Soares, M.S.; Vidal, M.; Santos, N.F.; Costa, F.M.; Marques, C.; Pereira, S.O.; Leitão, C. Immunosensing Based on Optical Fiber Technology: Recent Advances. Biosensors 2021, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.; Sánchez, A.; Rojas, F.; Ojeda, C. Recent Development in Optical Fiber Biosensors. Sensors 2007, 7, 797–859. [Google Scholar] [CrossRef]
- Monk, D.J.; Walt, D.R. Optical Fiber-Based Biosensors. Anal. Bioanal. Chem. 2004, 379, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2015–2019). Anal. Chem. 2019, 92, 397–430. [Google Scholar] [CrossRef] [PubMed]
- Bilro, L.; Alberto, N.; Pinto, J.L.; Nogueira, R. Optical Sensors Based on Plastic Fibers. Sensors 2012, 12, 12184–12207. [Google Scholar] [CrossRef] [PubMed]
- Peters, K. Polymer Optical Fiber Sensors—A Review. Smart Mater. Struct. 2010, 20, 013002. [Google Scholar] [CrossRef]
- Yang, H.Z.; Qiao, X.G.; Luo, D.; Lim, K.S.; Chong, W.; Harun, S.W. A Review of Recent Developed and Applications of Plastic Fiber Optic Displacement Sensors. Measurement 2014, 48, 333–345. [Google Scholar] [CrossRef]
- Kuang, K.S.C.; Quek, S.T.; Koh, C.G.; Cantwell, W.J.; Scully, P.J. Plastic Optical Fibre Sensors for Structural Health Monitoring: A Review of Recent Progress. J. Sens. 2009, 2009, 1–13. [Google Scholar] [CrossRef]
- Aitkulov, A.; Tosi, D. Optical Fiber Sensor Based on Plastic Optical Fiber and Smartphone for Measurement of the Breathing Rate. IEEE Sens. J. 2019, 19, 3282–3287. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Diaz, C.A.R.; Avellar, L.M.; Pontes, M.J.; Marques, C.; Frizera, A. Polymer Optical Fiber Sensors in Healthcare Applications: A Comprehensive Review. Sensors 2019, 19, 3156. [Google Scholar] [CrossRef] [PubMed]
- Arcas, A.D.S.; Dutra, F.D.S.; Allil, R.C.S.B.; Werneck, M.M. Surface Plasmon Resonance and Bending Loss-Based U-Shaped Plastic Optical Fiber Biosensors. Sensors 2018, 18, 648. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.M.C.; Lopes, R.N.; Franco, M.A.R.; Werneck, M.M.; Allil, R.C.S.B. Sensitivity Analysis of Different Shapes of a Plastic Optical Fiber-Based Immunosensor for Escherichia coli: Simulation and Experimental Results. Sensors 2017, 17, 2944. [Google Scholar] [CrossRef] [PubMed]
- Gowri, A.; Sai, V.V.R. Development of LSPR Based U-Bent Plastic Optical Fiber Sensors. Sens. Actuators B Chem. 2016, 230, 536–543. [Google Scholar] [CrossRef]
- Batumalay, M.; Harith, Z.; Rafaie, H.A.; Ahmad, F.; Khasanah, M.; Harun, S.W.; Nor, R.M.; Ahmad, H. Tapered Plastic Optical Fiber Coated with ZnO Nanostructures for the Measurement of Uric Acid Concentrations and Changes in Relative Humidity. Sens. Actuators A Phys. 2014, 210, 190–196. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, J.; Deng, S.; Yuan, L.; Teng, C. Parallel Polished Plastic Optical Fiber-Based SPR Sensor for Simultaneous Measurement of RI and Temperature. IEEE Trans. Instrum. Meas. 2021, 70, 9508308. [Google Scholar] [CrossRef]
- Teng, C.; Deng, H.; Liu, H.; Yang, H.; Yuan, L.; Zheng, J.; Deng, S. Refractive Index Sensor Based on Twisted Tapered Plastic Optical Fibers. Photonics 2019, 6, 40. [Google Scholar] [CrossRef]
- Teng, C.; Wang, Y.; Yuan, L. Polymer Optical Fibers Based Surface Plasmon Resonance Sensors and Their Applications: A Review. Opt. Fiber Technol. 2023, 77, 103256. [Google Scholar] [CrossRef]
- Gahlaut, S.K.; Pathak, A.; Gupta, B.D.; Singh, J.P. Portable Fiber-Optic SPR Platform for the Detection of NS1-Antigen for Dengue Diagnosis. Biosens. Bioelectron. 2022, 196, 113720. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Pandey, A.K.; Kaur, B. A Review of Advancements (2007–2017) in Plasmonics-Based Optical Fiber Sensors. Opt. Fiber Technol. 2018, 43, 20–34. [Google Scholar] [CrossRef]
- Leitão, C.; Pereira, S.O.; Marques, C.; Cennamo, N.; Zeni, L.; Shaimerdenova, M.; Ayupova, T.; Tosi, D. Cost-Effective Fiber Optic Solutions for Biosensing. Biosensors 2022, 12, 575. [Google Scholar] [CrossRef] [PubMed]
- Uniyal, A.; Srivastava, G.; Pal, A.; Taya, S.; Muduli, A. Recent Advances in Optical Biosensors for Sensing Applications: A Review. Plasmonics 2023, 18, 735–750. [Google Scholar] [CrossRef]
- Yin, K.; Wu, Y.; Wang, S.; Chen, L. A Sensitive Fluorescent Biosensor for the Detection of Copper Ion Inspired by Biological Recognition Element Pyoverdine. Sens. Actuators B Chem. 2016, 232, 257–263. [Google Scholar] [CrossRef]
- Xiao-hong, Z.; Lan-hua, L.; Wei-qi, X.; Bao-dong, S.; Jian-wu, S.; Miao, H.; Han-chang, S. A Reusable Evanescent Wave Immunosensor for Highly Sensitive Detection of Bisphenol A in Water Samples. Sci. Rep. 2014, 4, 4572. [Google Scholar] [CrossRef] [PubMed]
- Kozma, P.; Kehl, F.; Ehrentreich-Förster, E.; Stamm, C.; Bier, F.F. Integrated Planar Optical Waveguide Interferometer Biosensors: A Comparative Review. Biosens. Biosens. Bioelectron. 2014, 58, 287–307. [Google Scholar] [CrossRef]
- Broadway, C.; Min, R.; Leal-Junior, A.G.; Marques, C.; Caucheteur, C. Toward Commercial Polymer Fiber Bragg Grating Sensors: Review and Applications. J. Light. Technol. 2019, 37, 2605–2615. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, N.; Min, R.; Cheng, X.; Qu, H.; Hu, X. Recent Achievements on Grating Fabrications in Polymer Optical Fibers with Photosensitive Dopants: A Review. Polymers 2022, 14, 273. [Google Scholar] [CrossRef]
- Qu, H.; Huang, W.; Lin, Z.; Cheng, X.; Min, R.; Teng, C.; Caucheteur, C.; Hu, X. Influence of Annealing on Polymer Optical Fiber Bragg Grating Inscription, Stability and Sensing: A Review. Sensors 2023, 23, 7578. [Google Scholar] [CrossRef]
- Di Palma, P.; Leone, M.; Russo, M.; Iadicicco, A.; Cavaccini, G.; Consales, M.; Cusano, A.; Campopiano, S. Bonding Quality Monitoring of Carbon Fiber Reinforced Plastics Bonded Structures by Fiber Bragg Gratings. Optics & Laser Technol. 2023, 161, 109119. [Google Scholar]
- Viveiros, D.; Amorim, V.A.; Maia, J.M.; Silva, S.; Frazão, O.; Jorge, P.A.S.; Fernandes, L.A.; Marques, P.V.S. Femtosecond Laser Direct Written Off-Axis Fiber Bragg Gratings for Sensing Applications. Optics & Laser Technol. 2020, 128, 106227. [Google Scholar]
- Esposito, F.; Srivastava, A.; Sansone, L.; Giordano, M.; Campopiano, S.; Iadicicco, A. Label-Free Biosensors Based on Long Period Fiber Gratings: A Review. IEEE Sens. J. 2021, 21, 12692–12705. [Google Scholar] [CrossRef]
- Philip-Chandy, R.; Scully, P.J.; Eldridge, P.; Kadim, H.J.; Grapin, M.G.; Jonca, M.G.; D’Ambrosio, M.G.; Colin, F. An Optical Fiber Sensor for Biofilm Measurement Using Intensity Modulation and Image Analysis. IEEE J. Select. Topics Quantum Electron. 2000, 6, 764–772. [Google Scholar] [CrossRef]
- De Acha, N.; Socorro-Leránoz, A.B.; Elosúa, C.; Matías, I.R. Trends in the Design of Intensity-Based Optical Fiber Biosensors (2010–2020). Biosensors 2021, 11, 197. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Testa, G.; Marchetti, S.; De Maria, L.; Bernini, R.; Zeni, L.; Pesavento, M. Intensity-Based Plastic Optical Fiber Sensor with Molecularly Imprinted Polymer Sensitive Layer. Sens. Actuators B Chem. 2017, 241, 534–540. [Google Scholar] [CrossRef]
- Chambers, J.P.; Arulanandam, B.P.; Matta, L.L.; Weis, A.; Valdes, J.J. Biosensor recognition elements. Curr. Issues Mol. Biol. 2008, 10, 1–12. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- He, S.; Zhang, L.; Bai, S.; Yang, H.; Cui, Z.; Zhang, X.; Li, Y. Advances of Molecularly Imprinted Polymers (MIP) and the Application in Drug Delivery. Eur. Polym. J. 2021, 143, 110179. [Google Scholar] [CrossRef]
- Mujahid, A.; Afzal, A.; Dickert, F.L. Transitioning from Supramolecular Chemistry to Molecularly Imprinted Polymers in Chemical Sensing. Sensors 2023, 23, 7457. [Google Scholar] [CrossRef]
- Yang, W.; Ma, Y.; Sun, H.; Huang, C.; Shen, X. Molecularly imprinted polymers based optical fiber sensors: A review. Trends Anal. Chem. 2022, 152, 116608. [Google Scholar] [CrossRef]
- Singh, K.R.B.; Natarajan, A. Molecularly Imprinted Polymer-based Optical Immunosensors. Luminescence 2022, 38, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Duval, M. A Review of Faults Detectable by Gas-in-Oil Analysis in Transformers. IEEE Electr. Insul. Mag. 2002, 18, 8–17. [Google Scholar] [CrossRef]
- Li, M.; Shen, M.; Lu, J.; Yang, J.; Huang, Y.; Liu, L.; Fan, H.; Xie, J.; Xie, M. Maillard reaction harmful products in dairy products: Formation, occurrence, analysis, and mitigation strategies. Food Res. Int. 2022, 151, 110839. [Google Scholar] [CrossRef] [PubMed]
- Murkovic, M.; Bornik, M.A. Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol. Nutr. Food Res. 2007, 51, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Fu, X.; Liu, Z.; Cao, Q.; You, C. Contents and evolution of potential furfural compounds in milk-based formula, ultra-high temperature milk and pasteurised yoghurt. Int. Dairy, J. 2021, 120, 105086. [Google Scholar] [CrossRef]
- Sanz, M.L.; Del Castillo, M.D.; Corzo, N.; Olano, A. 2-Furoylmethyl amino acids and hydroxymethylfurfural as indicators of honey quality. J. Agric. Food Chem. 2003, 51, 4278–4283. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wu, Q.; Ren, D.; Wang, S.; Xie, Y. Research of the determination method of furfurals and furosine in milk and the application in the quality evaluation of milk. Qual. Assur. Saf. Crops Foods 2022, 14, 12–23. [Google Scholar] [CrossRef]
- Câmara, J.D.S.; Alves, M.A.; Marques, J.C. Changes in volatile composition of Madeira wines during their oxidative ageing. Anal. Chim. Acta. 2006, 563, 188–197. [Google Scholar] [CrossRef]
- Abraham, K.; Gürtler, R.; Berg, K.; Heinemeyer, G.; Lampen, A.; Appel, K.E. Toxicology and risk assessment of 5-hydroxymethylfurfural in food. Mol. Nutr. Food Res. 2011, 55, 667–678. [Google Scholar] [CrossRef]
- Uddin, S.; Hadi, S.M. Reactions of furfural and methylfurfural with DNA. Biochem. Mol. Biol. Int. 1995, 35, 185–195. [Google Scholar] [PubMed]
- Shahabuddin, A.R.; Hadi, S.M. Specificity of the in vitro interaction of methylfurfural with DNA. Mutagenesis 1990, 5, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Janzowski, C.; Glaab, V.; Samimi, E.; Schlatter, J.; Eisenbrand, G. 5-Hydroxymethylfurfural: Assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem. Toxicol. 2000, 38, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Z.; Hu, T.; Li, Y.; Liu, R.; Zhang, J.; He, H. Potential neurotoxicity of 5-hydroxymethylfurfural and its oligomers: Widespread substances in carbohydrate-containing foods. Food Funct. 2020, 11, 4216–4223. [Google Scholar] [CrossRef] [PubMed]
- Alberti, G.; Arcadio, F.; Pesavento, M.; Marzano, C.; Zeni, L.; Zeid, N.A.; Cennamo, N. Detection of 2-Furaldehyde in Milk by MIP-Based POF Chips Combined with an SPR-POF Sensor. Sensors 2022, 22, 8289. [Google Scholar] [CrossRef] [PubMed]
- Pesavento, M.; Zeni, L.; De Maria, L.; Alberti, G.; Cennamo, N. SPR-Optical Fiber-Molecularly Imprinted Polymer Sensor for the Detection of Furfural in Wine. Biosens. 2021, 11, 72. [Google Scholar] [CrossRef]
- Cennamo, N.; Arcadio, F.; Zeni, L.; Alberti, G.; Pesavento, M. Optical-Chemical Sensors Based on Plasmonic Phenomena Modulated via Micro-Holes in Plastic Optical Fibers Filled by Molecularly Imprinted Polymers. Sens. Actuators B Chem. 2022, 372, 132672. [Google Scholar] [CrossRef]
- Van Lith, J.; Lambeck, P.V.; Hoekstra, H.J.; Heideman, R.G.; Wijn, R.R. The segmented waveguide sensor: Principle and experiments. J. Light. Technol. 2005, 23, 355. [Google Scholar]
- Kinrot, N.; Nathan, M. Investigation of a periodically segmented waveguide Fabry-Pérot interferometer for use as a chemical/biosensor. J. Light. Technol. 2006, 24, 2139. [Google Scholar] [CrossRef]
- Cennamo, N.; De Maria, L.; D’Agostino, G.; Zeni, L.; Pesavento, M. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform. Sensors 2015, 15, 8499–8511. [Google Scholar] [CrossRef]
- Cennamo, N.; Zeni, L.; Pesavento, M.; Marchetti, S.; Marletta, V.; Baglio, S.; Graziani, S.; Pistorio, A.; Andò, B. A novel sensing methodology to detect furfural in water exploiting MIPs and inkjet-printed optical waveguides. IEEE Trans. Instrum. Meas. 2019, 68, 1582–1589. [Google Scholar] [CrossRef]
- Cennamo, N.; Arcadio, F.; Minardo, A.; Del Prete, D.; Zeni, L.; Pesavento, M.; Alberti, G.; Marletta, V.; Andò, B. Analysis of Low-Cost Inkjet-Printed Optical Platforms Covered by Molecularly Imprinted Polymers to Detect Furfural in Water. IEEE Sens. J. 2023, 23, 22169–22179. [Google Scholar] [CrossRef]
- Cennamo, N.; Arcadio, F.; Minardo, A.; Del Prete, D.; Zeni, L.; Pesavento, M.; Alberti, G.; Marletta, V.; Ando, B. Molecularly Imprinted Polymers and Inkjet-Printer Technology to Develop Optical-Chemical Sensors. In Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada, 16–19 May 2022. [Google Scholar]
- Zeni, L.; Pesavento, M.; Marchetti, S.; Cennamo, N. Slab Plasmonic Platforms Combined with Plastic Optical Fibers and Molecularly Imprinted Polymers for Chemical Sensing. Opt. Laser Technol. 2018, 107, 484–490. [Google Scholar] [CrossRef]
- Cennamo, N.; De Maria, L.; Chemelli, C.; Profumo, A.; Zeni, L.; Pesavento, M. Markers Detection in Transformer Oil by Plasmonic Chemical Sensor System Based on POF and MIPs. IEEE Sens. J. 2016, 16, 7663–7670. [Google Scholar] [CrossRef]
λ [nm] | [a.u] | [a.u] | K [mg L−1] | STATISTICS | ||||
---|---|---|---|---|---|---|---|---|
Value | Standard Error | Value | Standard Error | Value | Standard Error | Reduced C | Adj. R-Square | |
530 | 0.999 | 0.004 | 0.960 | 0.001 | 0.13 | 0.03 | 0.304 | 0.98 |
622 | 1.000 | 0.004 | 0.960 | 0.002 | 0.18 | 0.05 | 0.520 | 0.97 |
λ [nm] | LOD [mg L−1] | [mg−1 L] | |
---|---|---|---|
530 | 0.297 | 0.040 | 7.60 |
622 | 0.227 | 0.053 | 5.65 |
Sensor | Matrix | Ref. | |
---|---|---|---|
MIP-filled three-micro-hole SPR–POF sensor | Milk | 0.01 | [55] |
MIP-filled single-micro-hole SPR–POF sensor | Water | 0.04 | [57] |
MIP-filled three-micro-hole SPR–POF sensor | Water | 0.2 | [57] |
SPR–POF–MIP sensor | Wine | 4 | [56] |
SPR–POF–MIP sensor | Oil | 9 | [60] |
SPR–POF–MIP sensor | Water | 43 | [56] |
Inkjet-printed platform (longitudinal configuration) | Water | 30 | [61] |
Inkjet-printed platform (oblique configuration) | Water | 40 | [62] |
Inkjet-printed platform (orthogonal configuration) | Water | 50 | [63] |
SPR–slab-MIP sensor | Water | 30 | [64] |
Splitter-based sensor | Water | 40 | [This work] |
Sensor | Analyte | Matrix | LOD | Kaff | Ref. |
---|---|---|---|---|---|
SPR–POF–MIP sensor | DBDS | Oil | 0.01 mg L−1, 2.94 × 10−8 M | 1 mg−1 L, 3.5 × 106 M−1 | [65] |
Optical–chemical splitter sensor | DBDS | Oil | 0.013 mg L−1, 5.3 × 10−8 M | 2 mg−1 L, 8.8 × 106 M−1 | [36] |
SPR–POF–MIP sensor | 2-FAL | Water | 0.047 mg L−1, 49 × 10−8 M | 9 mg−1 L, 9 × 105 M−1 | [56] |
Optical–chemical splitter sensor | 2-FAL | Water | 0.04 mg L−1, 48 × 10−8 M | 8 mg−1 L, 8 × 105 M−1 | [This work] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavoletta, I.; Arcadio, F.; Renzullo, L.P.; Oliva, G.; Del Prete, D.; Verolla, D.; Marzano, C.; Alberti, G.; Pesavento, M.; Zeni, L.; et al. Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer. Sensors 2024, 24, 3928. https://doi.org/10.3390/s24123928
Tavoletta I, Arcadio F, Renzullo LP, Oliva G, Del Prete D, Verolla D, Marzano C, Alberti G, Pesavento M, Zeni L, et al. Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer. Sensors. 2024; 24(12):3928. https://doi.org/10.3390/s24123928
Chicago/Turabian StyleTavoletta, Ines, Francesco Arcadio, Luca Pasquale Renzullo, Giuseppe Oliva, Domenico Del Prete, Debora Verolla, Chiara Marzano, Giancarla Alberti, Maria Pesavento, Luigi Zeni, and et al. 2024. "Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer" Sensors 24, no. 12: 3928. https://doi.org/10.3390/s24123928
APA StyleTavoletta, I., Arcadio, F., Renzullo, L. P., Oliva, G., Del Prete, D., Verolla, D., Marzano, C., Alberti, G., Pesavento, M., Zeni, L., & Cennamo, N. (2024). Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer. Sensors, 24(12), 3928. https://doi.org/10.3390/s24123928