Lunar Lithium-7 Sensing (δ7Li): Spectral Patterns and Artificial Intelligence Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geospatial Databases
2.2. Instrumentation
- Wavelength Range: 0.7 to 3.1 μm
- Spectral Resolution: Variable, depending on the operational mode
- Spatial Resolution: Approximately 1.5 km/pixel
- Operational Mode: Provided both imaging and spectroscopic capabilities
- Purpose: Facilitated the analysis of mineral composition on the lunar surface through near-infrared spectroscopy.
- Wavelength Range: Ultraviolet to visible spectrum, covering approximately 0.25 to 1.1 μm
- Spectral Resolution: Varies across the ultraviolet and visible bands
- Spatial Resolution: Approximately 0.1 to 0.15 km/pixel
- Operational Mode: Provided imaging and spectroscopic capabilities
- Purpose: Enabled the collection of data on optical properties, distribution of chemical elements, and geological processes on the lunar surface.
2.3. Statistical Software and Modeling Methods
3. Results and Discussion
3.1. Selection of Lunar Study Sites
3.1.1. Aitken Crater
3.1.2. Rima Hadley
3.1.3. Apollo 17 Landing In The Taurus–Littrow Valley
3.2. Potential Terrestrial Comparisons and Study Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reddy, M.V.; Mauger, A.; Julien, C.M.; Paolella, A.; Zaghib, K. Brief History of Early Lithium-Battery Development. Materials 2020, 13, 1884. [Google Scholar] [CrossRef]
- Haferkamp, H.; Boehm, R.; Holzkamp, U.; Jaschik, C.; Kaese, V.; Niemeyer, M. Alloy development, processing and applications in magnesium lithium alloys. Mater. Trans. 2001, 42, 1160–1166. [Google Scholar] [CrossRef]
- Mitchell, P.B.; Hadzi-Pavlovic, D. Lithium treatment for bipolar disorder. Bull. World Health Organ. 2000, 78, 515–517. [Google Scholar] [PubMed]
- Schiemann, M.; Bergthorson, J.; Fischer, P.; Scherer, V.; Taroata, D.; Schmid, G. A review on lithium combustion. Appl. Energy 2016, 162, 948–965. [Google Scholar] [CrossRef]
- Azarpour, A.; Mohammadzadeh, O.; Rezaei, N.; Zendehboudi, S. Current status and future prospects of renewable and sustainable energy in North America: Progress and challenges. Energy Convers. Manag. 2022, 269, 115945. [Google Scholar] [CrossRef]
- Naser, M.Z.; Chehab, A.I. Materials and design concepts for space-resilient structures. Prog. Aerosp. Sci. 2018, 98, 74–90. [Google Scholar] [CrossRef]
- Toklu, Y.C.; Açıkbaş, N.Ç.; Açıkbaş, G.; Çerçevik, A.E.; Akpinar, P. Production of a set of lunar regolith simulants based on Apollo and Chinese samples. Adv. Space Res. 2023, 72, 565–576. [Google Scholar] [CrossRef]
- Nozette, S. The Clementine mission: Past, present, and future. Acta Astronaut. 1995, 35, 161–169. [Google Scholar] [CrossRef]
- Allton, J.H.; Bagby, J.R., Jr.; Stabekis, P.D. Lessons learned during apollo lunar sample quarantine and sample curation. Adv. Space Res. 1998, 22, 373–382. [Google Scholar] [CrossRef]
- Wang, H.; Sun, W.; Li, H.; Yu, X.; Gu, C.; Ma, C.; Feng, Y.; Cao, G.; Zhao, J.; Zhu, Y.; et al. Application of geological and short wavelength infrared (SWIR) spectroscopy mapping in the Mailong gold deposit, East Kunlun: Implications for exploration targeting. Ore Geol. Rev. 2024, 22, 106080. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, E.; Zhang, D.; Sun, D.; Yang, M.; Zheng, Z.; Zhang, Z.; Gao, L.; Panezai, S.; Qiu, K. Free Field of View Infrared Digital Holography for Mineral Crystallization. Cryst. Growth Des. 2023, 23, 7992–8008. [Google Scholar] [CrossRef]
- Kreslavsky, M.A.; Head, J.W.; Neumann, G.A.; Rosenburg, M.A.; Aharonson, O.; Smith, D.E.; Zuber, M.T. Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units. Icarus 2013, 226, 52–66. [Google Scholar] [CrossRef]
- Speyerer, E.J.; Robinson, M.S.; Boyd, A.; Silva, V.H.; Lawrence, S. Precise mapping of the Moon with the Clementine Ultraviolet/Visible Camera. Icarus 2023, 398, 115506. [Google Scholar] [CrossRef]
- Orbital Data Explorer. Available online: https://ode.rsl.wustl.edu (accessed on 10 August 2023).
- PILOT (Planetary Image Locator). Available online: https://pilot.wr.usgs.gov (accessed on 10 August 2023).
- Astropedia. Available online: https://astrogeology.usgs.gov/search?pmi-target=moon (accessed on 10 August 2023).
- QGIS. Available online: https://qgis.org/es/site/ (accessed on 10 August 2023).
- Priest, R.E.; Lewis, I.T.; Sewall, N.R.; Park, H.S.; Shannon, M.J.; Ledebuhr, A.G.; Pleasance, L.D.; Massie, M.A.; Metschuleit, K. Near-infrared camera for the Clementine mission. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), Conference on Infrared Detectors and Instrumentation for Astronomy, Orlando, FL, USA, 18–21 April 1995; Volume 2475, pp. 393–404. [Google Scholar]
- Kordas, J.F.; Lewis, I.T.; Priest, R.E.; White, W.T.; Nielsen, D.P.; Park, H.S.; Wilson, B.A.; Shannon, M.J.; Ledebuhr, A.G.; Pleasance, L.D. UV Visible Camera for the Clementine Mission. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), Conference on Infrared Detectors and Instrumentation for Astronomy, Orlando, FL, USA, 18–21 April 1995; Volume 2478, pp. 175–186. [Google Scholar]
- R. Available online: https://cran.r-project.org (accessed on 10 August 2023).
- RStudio. Available online: https://posit.co/download/rstudio-desktop/ (accessed on 10 August 2023).
- Majeed, F.; Ziggah, Y.Y.; Kusi-Manu, C.; Ibrahim, B.; Ahenkorah, I. A novel artificial intelligence approach for regolith geochemical grade prediction using multivariate adaptive regression splines. Geosyst. Geoenviron. 2022, 1, 100038. [Google Scholar] [CrossRef]
- Hancock, P.A.; Hutchinson, M.F. Spatial interpolation of large climate data sets using bivariate thin plate smoothing splines. Spectrochim. Acta Part A Environ. Model. Softw. 2006, 21, 1684–1694. [Google Scholar] [CrossRef]
- Chan, K.Y.; Abu-Salih, B.; Qaddoura, R.; Ala’M, A.Z.; Palade, V.; Pham, D.S.; Del Ser, J.; Muhammad, K. Deep neural networks in the cloud: Review, applications, challenges and research directions. Neurocomputing 2023, 545, 126327. [Google Scholar] [CrossRef]
- El Said, B. Predicting the non-linear response of composite materials using deep recurrent convolutional neural networks. Int. J. Solids Struct. 2023, 276, 112334. [Google Scholar] [CrossRef]
- Salehin, I.; Islam, M.S.; Saha, P.; Noman, S.M.; Tuni, A.; Hasan, M.M.; Baten, M.A. AutoML: A Systematic Review on Automated Machine Learning with Neural Architecture Search. J. Inf. Intell. 2023, 2, 52–81. [Google Scholar] [CrossRef]
- Wang, X.; Lin, X.; Dang, X. Supervised learning in spiking neural networks: A review of algorithms and evaluations. Neural Netw. 2020, 125, 258–280. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Meng, J.; Ludescher, J.; Chen, X.; Ashkenazy, Y.; Kurths, J.; Havlin, S.; Schellnhuber, H.J. Statistical physics approaches to the complex Earth system. Phys. Rep. 2021, 896, 1–84. [Google Scholar] [CrossRef]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101805. [Google Scholar] [CrossRef]
- Muzamhindo, H.; Ferentinou, M. Generic compressive strength prediction model applicable to multiple lithologies based on a broad global database. Probabilistic Eng. Mech. 2023, 71, 103400. [Google Scholar] [CrossRef]
- Hung, W.L.; Lee, E.S.; Chuang, S.C. Balanced bootstrap resampling method for neural model selection. Comput. Math. App. 2011, 62, 4576–4581. [Google Scholar] [CrossRef]
- Available online: https://www.nationalgeographic.com.es/ciencia/descubierta-enorme-masa-metalica-bajo-suelo-luna_14377 (accessed on 5 June 2024).
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Available online: https://nssdc.gsfc.nasa.gov/imgcat/html/object_page/lo5_h105_3.html (accessed on 5 June 2024).
- Available online: https://www.nasa.gov/history/50-years-ago-apollo-17-lands-at-taurus-littrow/ (accessed on 5 June 2024).
LithiumD7 | UVV-415 | UVV-750 | UVV-900 | UVV-950 | UVV-1000 | |
---|---|---|---|---|---|---|
Minimum | 3.350 | 0.06720 | 0.1079 | 0.1093 | 0.1104 | 0.1140 |
Median | 4.375 | 0.07350 | 0.1247 | 0.1259 | 0.1286 | 0.1322 |
Mean | 4.379 | 0.08254 | 0.1351 | 0.1399 | 0.1418 | 0.1467 |
Maximum | 8.890 | 0.12844 | 0.2054 | 0.2175 | 0.2205 | 0.2269 |
Nir1-1100 | Nir2-1250 | Nir3-1500 | Nir4-2000 | Nir5-2600 | Nir6-2780 | |
---|---|---|---|---|---|---|
Minimum | 0.1118 | 0.1247 | 0.1314 | 0.1511 | 0.2276 | 0.7467 |
Median | 0.1474 | 0.1620 | 0.1777 | 0.2281 | 0.3421 | 0.9277 |
Mean | 0.1534 | 0.1673 | 0.1848 | 0.2271 | 0.3611 | 0.9394 |
Maximum | 0.2303 | 0.2504 | 0.2745 | 0.3151 | 0.4909 | 1.1517 |
LithiumD7 | UVV-415 | UVV-750 | UVV-900 | UVV-950 | UVV-1000 | |
---|---|---|---|---|---|---|
Minimum | 3.919 | 0.07126 | 0.1171 | 0.1208 | 0.1221 | 0.1268 |
Median | 4.882 | 0.08195 | 0.1334 | 0.1377 | 0.1401 | 0.1443 |
Mean | 4.959 | 0.08262 | 0.1352 | 0.1399 | 0.1419 | 0.1467 |
Maximum | 6.436 | 0.10386 | 0.1659 | 0.1739 | 0.1772 | 0.1818 |
Nir1-1100 | Nir2-1250 | Nir3-1500 | Nir4-2000 | Nir5-2600 | Nir6-2780 | |
---|---|---|---|---|---|---|
Minimum | 0.1197 | 0.1324 | 0.1402 | 0.1650 | 0.2475 | 0.7835 |
Median | 0.1538 | 0.1673 | 0.1859 | 0.2293 | 0.3654 | 0.9468 |
Mean | 0.1537 | 0.1676 | 0.1851 | 0.2278 | 0.3604 | 0.9391 |
Maximum | 0.1878 | 0.2028 | 0.2282 | 0.2785 | 0.4465 | 1.0542 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, J.; Fernandez, S.; Diez, E.; Pinilla-Alonso, N.; Pérez, S.; Iglesias, S.; Buendía, A.; Rodríguez, J.; de Cos, J. Lunar Lithium-7 Sensing (δ7Li): Spectral Patterns and Artificial Intelligence Techniques. Sensors 2024, 24, 3931. https://doi.org/10.3390/s24123931
Fernandez J, Fernandez S, Diez E, Pinilla-Alonso N, Pérez S, Iglesias S, Buendía A, Rodríguez J, de Cos J. Lunar Lithium-7 Sensing (δ7Li): Spectral Patterns and Artificial Intelligence Techniques. Sensors. 2024; 24(12):3931. https://doi.org/10.3390/s24123931
Chicago/Turabian StyleFernandez, Julia, Susana Fernandez, Enrique Diez, Noemi Pinilla-Alonso, Saúl Pérez, Santiago Iglesias, Alejandro Buendía, Javier Rodríguez, and Javier de Cos. 2024. "Lunar Lithium-7 Sensing (δ7Li): Spectral Patterns and Artificial Intelligence Techniques" Sensors 24, no. 12: 3931. https://doi.org/10.3390/s24123931
APA StyleFernandez, J., Fernandez, S., Diez, E., Pinilla-Alonso, N., Pérez, S., Iglesias, S., Buendía, A., Rodríguez, J., & de Cos, J. (2024). Lunar Lithium-7 Sensing (δ7Li): Spectral Patterns and Artificial Intelligence Techniques. Sensors, 24(12), 3931. https://doi.org/10.3390/s24123931