Efficient Generalized Electroencephalography-Based Drowsiness Detection Approach with Minimal Electrodes
Abstract
:1. Introduction
- Overcoming inter-subject variability by using different EEG characteristics (time, frequency, time–frequency).
- Identifying the most effective ML classification models in each classification mode (intra, inter).
- Evaluating the impact of feature selection methods on performance and accuracy.
- Reducing the number of electrodes for enhanced practicality.
2. Related Work
Literature
3. Materials and Methods
3.1. EEG-Based Drowsiness Detection
3.1.1. Artifact Removal
3.1.2. Segmentation
3.1.3. Feature Extraction
- Time analysis
- Frequency analysis
- TF analysis
3.1.4. Feature Selection
3.1.5. Classification
3.2. EEG Data (DROZY)
4. Materials and Methods
4.1. EEG Features
- Statistical characteristics over time
- Relative power spectral density
- Discrete Wavelet Transformation
4.2. Feature Selection
5. Final Data, Classification, and Validation
5.1. Final Data
- Cross-subject: In this data distribution mode, we employ a single subject as the test case in each iteration to evaluate the performance of the ML model trained on the remaining data.
- Combined subject: In this mode, the characteristics of all subjects are combined and divided into 70% for training and 30% for validation games.
5.2. Classification Algorithms
- SVM
- KNN
- Step 1: Select the number K of neighbors.
- Step 2: Calculate the distance between the unclassified point and the other points.
- Step 3: Take the nearest K according to the calculated distance.
- Step 4: Count the number of points belonging to each category among these K neighbors.
- Step 5: Assign the new point to the most present category allowed by these K neighbors.
- Euclidean distance
- Manhattan distance
- Minkowski distance
- Uniform weighting
- Inverse distance weighting
- Kernel function weighting
- Naive Bayes
- Gaussian NB
- Multinomial NB
- Bernoulli NB
- Decision tree
- MLP
- Learning Rate
- Batch Size
- Number of Epochs
- Dropout Rate
- Initialization Methods
5.3. Evaluation Metrics
6. Results and Discussion
6.1. Intra Mode
6.2. Inter Mode
6.3. Comparison of RFECV with Other Feature Selection Methods
6.4. Discussion
- The different EEG features extracted from various analysis domains such as time, frequency, and time–frequency (TF) help increase the number of indicators of drowsiness, thereby enhancing the accuracy and generalization of the approach.
- The use of a 10 s sliding window helps maintain critical information about drowsiness, enabling more precise detection compared to a 30 s window. This choice significantly enhances the accuracy of drowsiness detection by capturing more immediate and relevant changes in the EEG signals. Consequently, the approach benefits from improved sensitivity to variations in drowsiness levels, resulting in a more reliable and effective monitoring system.
- The intelligent feature selection layer, composed of RFECV based on SVM-RBF, instead of dimension reduction tools like PCA and KPCA, helps maintain only the most relevant features related to drowsiness. Additionally, the K-fold cross-validation technique helps to eliminate overfitting, ensuring the model’s robustness and generalizability.
- The selection of suitable EEG channels (C3, C4) with the highest precision helps minimize the effect of interference between electrodes, enhancing the system’s accuracy and making it more adaptable to real-life conditions.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Schie, M.K.; Lammers, G.J.; Fronczek, R.; Middelkoop, H.A.; van Dijk, J.G. Vigilance: Discussion of related concepts and proposal for a definition. Sleep Med. 2021, 83, 175–181. [Google Scholar] [CrossRef]
- Gibbings, A.; Ray, L.; Berberian, N.; Nguyen, T.; Zandi, A.S.; Owen, A.; Comeau, F.; Fogel, S. EEG and behavioural correlates of mild sleep deprivation and vigilance. Clin. Neurophysiol. 2021, 132, 45–55. [Google Scholar] [CrossRef]
- Slater, J.D. A definition of drowsiness: One purpose for sleep? Med. Hypotheses 2008, 71, 641–644. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Li, W.; Liu, Y.; Li, C.; Tang, B.; Guo, G. Towards Human-Vehicle Interaction: Driving Risk Analysis Under Different Driver Vigilance States and Driving Risk Detection Method. Automot. Innov. 2023, 6, 32–47. [Google Scholar] [CrossRef]
- Wang, H.; Chen, D.; Huang, Y.; Zhang, Y.; Qiao, Y.; Xiao, J.; Xie, N.; Fan, H. Assessment of vigilance level during work: Fitting a hidden Markov model to heart rate variability. Brain Sci. 2023, 13, 638. [Google Scholar] [CrossRef]
- Jing, M.-J.; Li, H.; Li, C.-P.; Wei, X.-J.; Lin, W.-Q.; Zhu, S.-C.; Xu, Y.-L.; Li, L.-M. The Association between Working Hours with Vigilance and Executive Function of Intensive Care Unit Nurses. J. Nurs. Manag. 2023, 2023, 3770404. [Google Scholar] [CrossRef]
- Jagannathan, S.R.; Bareham, C.A.; Bekinschtein, T.A. Decreasing alertness modulates perceptual decision-making. J. Neurosci. 2021, 42, 454–473. [Google Scholar] [CrossRef]
- Albadawi, Y.; Takruri, M.; Awad, M. A review of recent developments in driver drowsiness detection systems. Sensors 2022, 22, 2069. [Google Scholar] [CrossRef]
- Albadawi, Y.; AlRedhaei, A.; Takruri, M. Real-time machine learning-based driver drowsiness detection using visual features. J. Imaging 2023, 9, 91. [Google Scholar] [CrossRef]
- François, C. Development and Validation of Algorithms for Automatic and Real-Time Characterization of Drowsiness. Ph.D. Thesis, University of Liège, Liège, Belgium, 2018. [Google Scholar]
- Li, G.; Chung, W.-Y. Electroencephalogram-based approaches for driver drowsiness detection and management: A review. Sensors 2022, 22, 1100. [Google Scholar] [CrossRef]
- Fouad, I.A. A robust and efficient EEG-based drowsiness detection system using different machine learning algorithms. Ain Shams Eng. J. 2023, 14, 101895. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Kumar, N.; Kaushal, R.K.; Gururaj, H.L.; Flammini, F.; Natarajan, R. System and method for driver drowsiness detection using behavioral and sensor-based physiological measures. Sensors 2023, 23, 1292. [Google Scholar] [CrossRef]
- Naik, G.R.; Kumar, D.K. An overview of independent component analysis and its applications. Informatica 2011, 35, 63–81. [Google Scholar]
- Bharadiya, J.P. A tutorial on principal component analysis for dimensionality reduction in machine learning. Int. J. Innov. Sci. Res. Technol. 2023, 8, 2028–2032. [Google Scholar]
- Schölkopf, B.; Smola, A.; Müller, K.R. Kernel principal component analysis. In Proceedings of the International Conference on Artificial Neural Networks, Lausanne, Switzerland, 8–10 October 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 583–588. [Google Scholar]
- Zeng, X.; Chen, Y.W.; Tao, C. Feature selection using recursive feature elimination for handwritten digit recognition. In Proceedings of the 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kyoto, Japan, 12–14 September 2009; pp. 1205–1208. [Google Scholar]
- Kilmen, S.; Bulut, O. Scale abbreviation with recursive feature elimination and genetic algorithms: An illustration with the test emotions questionnaire. Information 2023, 14, 63. [Google Scholar] [CrossRef]
- Fan, G.; Deng, Z.; Ye, Q.; Wang, B. Machine learning-based prediction models for patients no-show in online outpatient ap-pointments. J. Inf. Technol. Data Manag. 2021, 2, 45–52. [Google Scholar] [CrossRef]
- He, L.; Valocchi, A.J.; Duarte, C.A. An adaptive global–local generalized FEM for multiscale advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 2024, 418, 116548. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, P.; Zhang, D.; Wang, H. MR-DCAE: Manifold regularization-based deep convolutional autoencoder for un-authorized broadcasting identification. Int. J. Intell. Syst. 2021, 36, 7204–7238. [Google Scholar] [CrossRef]
- Dogan, S.; Tuncer, I.; Baygin, M.; Tuncer, T. A new hand-modeled learning framework for driving fatigue detection using EEG signals. Neural Comput. Appl. 2023, 35, 14837–14854. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Gu, B.; Cao, S.; Fang, D. Identifying mental fatigue of construction workers using EEG and deep learn-ing. Autom. Constr. 2023, 151, 104887. [Google Scholar] [CrossRef]
- Gangadharan, S.; Vinod, A.P. Drowsiness detection using portable wireless EEG. Comput. Methods Programs Biomed. 2022, 214, 106535. [Google Scholar] [CrossRef]
- Bencsik, B.; Reményi, I.; Szemenyei, M.; Botzheim, J. Designing an embedded feature selection algorithm for a drowsiness detector model based on electroencephalogram data. Sensors 2023, 23, 1874. [Google Scholar] [CrossRef]
- Ramos, P.M.; Maior, C.B.; Moura, M.C.; Lins, I.D. Automatic drowsiness detection for safety-critical operations using ensem-ble models and EEG signals. Process. Saf. Environ. Prot. 2022, 164, 566–581. [Google Scholar] [CrossRef]
- Krishnan, P.; Yaacob, S.; Krishnan, A.P.; Rizon, M.; Ang, C.K. EEG based Drowsiness Detection using Relative Band Power and Short-time Fourier Transform. J. Robot. Netw. Artif. Life 2020, 7, 147–151. [Google Scholar] [CrossRef]
- Yaacob, S.; Affandi, N.A.I.; Krishnan, P.; Rasyadan, A.; Yaakop, M.; Mohamed, F. Drowsiness detection using EEG and ECG signals. In Proceedings of the 2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Kota Kinabalu, Malaysia, 26–27 September 2020; pp. 1–5. [Google Scholar]
- Abidi, A.; Ben Khalifa, K.; Ben Cheikh, R.; Valderrama Sakuyama, C.A.; Bedoui, M.H. Automatic detection of drowsiness in EEG records based on machine learning approaches. Neural Process. Lett. 2022, 54, 5225–5249. [Google Scholar] [CrossRef]
- Saleem, A.A.; Siddiqui, H.U.R.; Raza, M.A.; Rustam, F.; Dudley, S.; Ashraf, I. A systematic review of physiological signals based driver drowsiness detection systems. Cogn. Neurodyn. 2023, 17, 1229–1259. [Google Scholar] [CrossRef]
- Jiang, X.; Bian, G.-B.; Tian, Z. Removal of artifacts from EEG signals: A review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef]
- Mumtaz, W.; Rasheed, S.; Irfan, A. Review of challenges associated with the EEG artifact removal methods. Biomed. Signal Process. Control. 2021, 68, 102741. [Google Scholar] [CrossRef]
- Ille, N.; Nakao, Y.; Yano, S.; Taura, T.; Ebert, A.; Bornfleth, H.; Asagi, S.; Kozawa, K.; Itabashi, I.; Sato, T.; et al. Ongoing EEG artifact correction using blind source separation. Clin. Neurophysiol. 2024, 158, 149–158. [Google Scholar] [CrossRef]
- Yu, J.; Li, C.; Lou, K.; Wei, C.; Liu, Q. Embedding decomposition for artifacts removal in EEG signals. J. Neural Eng. 2022, 19, 026052. [Google Scholar] [CrossRef]
- Sen, D.; Mishra, B.B.; Pattnaik, P.K. A review of the filtering techniques used in EEG signal processing. In Proceedings of the 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 11–13 April 2023; pp. 270–277. [Google Scholar]
- Stancin, I.; Cifrek, M.; Jovic, A. A review of EEG signal features and their application in driver drowsiness detection systems. Sensors 2021, 21, 3786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nahon, R.; Tartaglione, E.; Mozharovskyi, P.; Nguyen, V.-T. Optimized preprocessing and tiny ml for attention state classification. In Proceedings of the 2023 IEEE Statistical Signal Processing Workshop (SSP), Hanoi, Vietnam, 2–5 July 2023; pp. 695–699. [Google Scholar]
- Arif, S.; Munawar, S.; Ali, H. Driving drowsiness detection using spectral signatures of EEG-based neurophysiology. Front. Physiol. 2023, 14, 1153268. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.; Ben Khalifa, K.; Belhadj, N.; Bedoui, M.H.; Sakuyama, C.A.V. Discrete Wavelet Transform Coefficients for Drowsi-ness Detection from EEG Signals. In Proceedings of the 2023 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS), Gammarth, Tunisia, 1–4 November 2023; pp. 1–6. [Google Scholar]
- Zhang, Y.; Guo, H.; Zhou, Y.; Xu, C.; Liao, Y. Recognising drivers’ mental fatigue based on EEG multi-dimensional feature selection and fusion. Biomed. Signal Process. Control. 2023, 79, 104237. [Google Scholar] [CrossRef]
- Espinosa, R.; Talero, J.; Weinstein, A. Effects of tau and sampling frequency on the regularity analysis of ecg and eeg signals using apen and sampen entropy estimators. Entropy 2020, 22, 1298. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wong, C.M.; Wang, Z.; Rosa, A.C.; Wang, H.T.; Wan, F. Fatigue detection in SSVEP-BCIs based on wavelet entropy of EEG. IEEE Access 2021, 9, 114905–114913. [Google Scholar] [CrossRef]
- Zou, S.; Qiu, T.; Huang, P.; Bai, X.; Liu, C. Constructing multi-scale entropy based on the empirical mode decomposition (EMD) and its application in recognizing driving fatigue. J. Neurosci. Methods 2020, 341, 108691. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wan, Y.; Li, M.; Huang, H.; Li, L.; Hou, X.; Pan, J.; Wen, Z.; Li, J. Recent Advances in Fatigue Detection Algorithm Based on EEG. Intell. Autom. Soft Comput. 2023, 35, 3573–3586. [Google Scholar] [CrossRef]
- Stancin, I.; Frid, N.; Cifrek, M.; Jovic, A. EEG signal multichannel frequency-domain ratio indices for drowsiness detection based on multicriteria optimization. Sensors 2021, 21, 6932. [Google Scholar] [CrossRef]
- Singh, A.K.; Krishnan, S. Trends in EEG signal feature extraction applications. Front. Artif. Intell. 2023, 5, 1072801. [Google Scholar] [CrossRef]
- Chaddad, A.; Wu, Y.; Kateb, R.; Bouridane, A. Electroencephalography signal processing: A comprehensive review and analy-sis of methods and technique. Sensors 2023, 23, 6434. [Google Scholar] [CrossRef]
- Bommert, A.; Sun, X.; Bischl, B.; Rahnenführer, J.; Lang, M. Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 2019, 143, 106839. [Google Scholar] [CrossRef]
- Mera-Gaona, M.; López, D.M.; Vargas-Canas, R. An ensemble feature selection approach to identify relevant features from EEG signals. Appl. Sci. 2021, 11, 6983. [Google Scholar] [CrossRef]
- Drungilas, D.; Kurmis, M.; Lukosius, Z.; Jakovlev, S.; Voznak, M. An adaptive method for inspecting illumination of color intensity in transparent polyethylene terephthalate preforms. IEEE Access 2020, 8, 83189–83198. [Google Scholar] [CrossRef]
- El-Nabi, S.A.; El-Shafai, W.; El-Rabaie, E.-S.M.; Ramadan, K.F.; El-Samie, F.E.A.; Mohsen, S. Machine learning and deep learn-ing techniques for driver fatigue and drowsiness detection: A review. Multimed. Tools Appl. 2024, 83, 9441–9477. [Google Scholar] [CrossRef]
- Massoz, Q.; Langohr, T.; Francois, C.; Verly, J.G. The ULg multimodality drowsiness database (called DROZY) and examples of use. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–7. [Google Scholar]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Buzsaki, G. Rhythms of the Brain; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- De Gennaro, L.; Marzano, C.; Fratello, F.; Moroni, F.; Pellicciari, M.C.; Ferlazzo, F.; Costa, S.; Couyoumdjian, A.; Curcio, G.; Sforza, E.; et al. The electroencephalographic fingerprint of sleep is genetically determined: A twin study. Ann. Neurol. 2008, 64, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Kappenman, E.S.; Luck, S.J. The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology 2010, 47, 888–904. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, L.; Hernandez, D.E.; Rodriguez, A.; Monroy, O.; Villanueva, O. Effects of feature reduction on emotion recogni-tion using EEG signals and machine learning. Expert Syst. 2024, e13577. [Google Scholar] [CrossRef]
- Roy, A.; Chakraborty, S. Support vector machine in structural reliability analysis: A review. Reliab. Eng. Syst. Saf. 2023, 233, 109126. [Google Scholar] [CrossRef]
- Zhang, S. Challenges in KNN classification. IEEE Trans. Knowl. Data Eng. 2021, 34, 4663–4675. [Google Scholar] [CrossRef]
- Hashim, K.A.; Sibaroni, Y.; Prasetyowati, S.S. The Effectiveness of the Ensemble Naive Bayes in Analyzing Review Sentiment of the Lazada Application on Google Play. In Proceedings of the 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 28–29 January 2024; pp. 1–5. [Google Scholar]
- Issah, I.; Appiah, O.; Appiahene, P.; Inusah, F. A systematic review of the literature on machine learning applica-tion of de-termining the attributes influencing academic performance. Decis. Anal. J. 2023, 7, 100204. [Google Scholar] [CrossRef]
- Abd-elaziem, A.H.; Soliman, T.H. A Multi-Layer Perceptron (MLP) Neural Networks for Stellar Classification: A Review of Methods and Results. Int. J. Adv. Appl. Comput. Intell. 2023, 3, 54216. [Google Scholar]
- Cui, J. EEG Driver Drowsiness Dataset. 2021. Available online: https://figshare.com/articles/dataset/EEG_driver_drowsiness_dataset/14273687/3 (accessed on 20 October 2022).
- Min, J.; Xiong, C.; Zhang, Y.; Cai, M. Driver fatigue detection based on prefrontal EEG using multi-entropy measures and hybrid model. Biomed. Signal Process. Control. 2021, 69, 102857. [Google Scholar] [CrossRef]
- Cui, J.; Lan, Z.; Sourina, O.; Müller-Wittig, W. EEG-based cross-subject driver drowsiness recognition with an interpretable convolutional neural network. IEEE Trans. Neural Networks Learn. Syst. 2022, 34, 7921–7933. [Google Scholar] [CrossRef]
- Wang, F.; Wu, S.; Ping, J.; Xu, Z.; Chu, H. EEG driving fatigue detection with PDC-based brain functional network. IEEE Sen-Sors J. 2021, 21, 10811–10823. [Google Scholar] [CrossRef]
Protocol Names | Train Data | Test Data |
---|---|---|
P1 (combined subject) | 70% of all features | 30% of all features |
P2 (cross-subject) | Six subjects | One subject |
P3 (cross-subject) | Five subjects | Two subjects |
P4 (cross-subject) | Four subjects | Three subjects |
Subjects | NB (Accuracy %) | KNN (Accuracy %) | DT (Accuracy %) | MLP (Accuracy %) | SVM (Accuracy %) |
---|---|---|---|---|---|
Subject 1 | 78 | 81.9 | 82 | 94 | 95.8 |
Subject 2 | 81 | 86 | 81 | 94.4 | 98 |
Subject 3 | 87.5 | 94.4 | 88.8 | 99 | 98.6 |
Subject 4 | 99.6 | 98.95 | 95.8 | 99.9 | 99 |
Subject 5 | 84.72 | 87.5 | 95.6 | 97.2 | 97.5 |
Subject 6 | 94 | 94.4 | 94 | 98.6 | 98.8 |
Subject 7 | 93 | 86 | 84.7 | 94 | 94 |
Overall | 88.26 | 89.87 | 88.84 | 96.72 | 97.38 |
Derivation | NB (Accuracy %) | DT (Accuracy %) | KNN (Accuracy %) | MLP (Accuracy %) | SVM (Accuracy %) |
---|---|---|---|---|---|
Fz | 82.8 | 67.52 | 79.92 | 71.2 | 75.5 |
Cz | 83 | 79.2 | 79.1 | 75 | 83.5 |
C3 | 87.8 | 88.1 | 85.6 | 90.2 | 91.8 |
C4 | 88.5 | 88.8 | 83.2 | 92.1 | 94.8 |
Pz | 62.2 | 65 | 75.8 | 80.2 | 83 |
Subjects | Number of Features | Name of Features |
---|---|---|
S1 | 7 | Skewness (C3)/Standard deviation of details coefficients (c4)/Delta RPSD (c3)/Beta RPSD (c3)/Beta RPSD (c4)/Gamma RPSD (c3)/Gamma RPSD (c4) |
S2 | 9 | Standard deviation (c4)/Kurtosis (c4)/Energy of details coefficients (c4)/Theta RPSD (c4)/Alpha RPSD (c4)/Beta RPSD (c3)/Beta RPSD (c4)/Gamma RPSD (c3)/Gamma RPSD (c4) |
S3 | 7 | Standard deviation (c4)/Kurtosis (c4)/Standard deviation of details coefficients (c4)/Alpha RPSD (c4)/Beta RPSD (c4)/Beta RPSD (c3)/Gamma RPSD(c4) |
S4 | 4 | Delta RPSD (c4)/Theta RPSD (c4)/Beta RPSD (c3)/Gamma RPSD (c4) |
S5 | 8 | Standard deviation (c3)/Standard deviation (c4)/Skewness (C3)/Skewness (C4)/Kurtosis(c4)/Energy of details coefficients (c3)/Energy of details coefficients (c4)/Energy of approximation coefficients (c4) |
S6 | 9 | Energy of details coefficients (c3)/Energy of details coefficients (c4)/Energy of approximation coefficients (c4)/Energy of approximation coefficients (c3)/Entropy of details coefficients (c4)/standard deviation (c4)/Skewness (C3)/Mean of details coefficients (c4)/standard deviation of approximation coefficients (c4) |
S7 | 19 | Entropy of details coefficients (c4)/Entropy of details coefficients (c3)/Energy of details coefficients (c3)/Energy of details coefficients (c4)/Energy of approximation coefficients (c4)/Energy of approximation coefficients (c3)/Skewness (C3)/Skewness (C4)/Theta RPSD (c3)/Alpha RPSD (c4)/Alpha RPSD (c3)/Beta RPSD (c3)/Beta RPSD (c4)/Gamma RPSD (c3)/Gamma RPSD (c4)/Standard deviation (c4)/Kurtosis(c4)/Standard deviation (c3)/Kurtosis(c3) |
Protocols | NB | |||
---|---|---|---|---|
P (%) | S (%) | F1 (%) | A (%) | |
P1 | 66.1 | 65.2 | 65 | 65.7 |
P2 | 71.5 | 71.1 | 72.1 | 71.2 |
P3 | 63.1 | 61.5 | 62.8 | 62.65 |
P4 | 79 | 77.8 | 78.5 | 78.2 |
Protocols | KNN | |||
---|---|---|---|---|
P (%) | S (%) | F1 (%) | A (%) | |
P1 | 86.5 | 84.8 | 85.6 | 85.2 |
P2 | 84.5 | 84.5 | 85.2 | 84.63 |
P3 | 84.8 | 84.3 | 87.1 | 85.5 |
P4 | 88.1 | 87.5 | 89.1 | 88.3 |
Protocols | DT | |||
---|---|---|---|---|
P (%) | S (%) | F1 (%) | A (%) | |
P1 | 78.1 | 78.7 | 79.9 | 79.5 |
P2 | 79.5 | 78.2 | 80.9 | 79.7 |
P3 | 82.3 | 82.1 | 83 | 81.89 |
P4 | 86.3 | 85 | 86.1 | 85.2 |
Protocols | MLP | |||
---|---|---|---|---|
P (%) | S (%) | F1 (%) | A (%) | |
P1 | 92.5 | 94 | 93.2 | 93.8 |
P2 | 88.7 | 88.5 | 90 | 88.99 |
P3 | 94 | 94 | 94 | 94 |
P4 | 92.9 | 94.8 | 95.2 | 94.8 |
Protocols | SVM | |||
---|---|---|---|---|
P (%) | S (%) | F1 (%) | A (%) | |
P1 | 88 | 88 | 88.1 | 88 |
P2 | 81.3 | 80.5 | 79.89 | 80.2 |
P3 | 85.5 | 84.2 | 86.2 | 85.3 |
P4 | 89.5 | 89.1 | 89.7 | 88.97 |
Protocols | NB (Accuracy %) | DT (Accuracy %) | KNN (Accuracy %) | MLP (Accuracy %) | SVM (Accuracy %) |
---|---|---|---|---|---|
P1 | 70.6 | 90.5 | 81.2 | 95.18 | 93.85 |
P2 | 73.2 | 86.63 | 80.7 | 90.5 | 89.51 |
P3 | 65.65 | 86.5 | 83.5 | 95.3 | 91.8 |
P4 | 81 | 92.4 | 87.2 | 96.4 | 95.2 |
Ref. | Feature Extraction Method | Classifier | Database | Number of Electrodes | A (%) | P (%) | S (%) | F1 (%) |
---|---|---|---|---|---|---|---|---|
[22] | WT | KNN | Private | 32 | 82.08 | 78.84 | 87.71 | 83.27 |
[24] | FFT | SVM | Private | 4 | 78.3 | 80.92 | 78.95 | 76.51 |
[25] | PSD | Neural network | EEG driver drowsiness dataset [63] | 32 | 92.6 | 92.7 | - | 92.7 |
[26] | Hjorth Parameters | MLP | DROZY | 1 | 90 | - | - | - |
[28] | PSD | SVM | DROZY | 5 | 96.4 | |||
[30] | TQWT | SVM | Sahloul University Hopital | 1 | 94 | - | 94.08 | - |
Proposed methods | Statics/RPSD/ DWT | SVM | DROZY | 2 | 99.85 | 99.87 | 99.8 | 99.5 |
Ref. | Feature Extraction Method | Classifier | Database | Number of Electrodes | A (%) | P (%) | S (%) | F1 (%) |
---|---|---|---|---|---|---|---|---|
[64] | Entropy | Hybrid classifier (LR+ELM+LightGBM) | Private | 2 | 94.2 | - | 94 | - |
[65] | Relative power | SVM | Multichannel_EEG_recordings_during_a_sustainedattention_driving_task_preprocessed_dataset | 30 | 68.64 | - | - | - |
[38] | Spectral power | DT | Private (HITEC University, Taxila, Pakistan) | 1 | 85.6 | 89.7 | - | 87.6 |
[66] | PSD | SVM | Private (North eastern UNIVERSITY) | 32 | 87.16 | - | - | - |
[29] | TQWT | SVM | Private (Sahloul University Hopital) | 1 | 89 | - | 89.37 | - |
Proposed methods | Statics/RPSD/DWT | SVM | DROZY | 2 | 96.4 | 96.9 | 95.87 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayed, A.; Belhadj, N.; Ben Khalifa, K.; Bedoui, M.H.; Valderrama, C. Efficient Generalized Electroencephalography-Based Drowsiness Detection Approach with Minimal Electrodes. Sensors 2024, 24, 4256. https://doi.org/10.3390/s24134256
Zayed A, Belhadj N, Ben Khalifa K, Bedoui MH, Valderrama C. Efficient Generalized Electroencephalography-Based Drowsiness Detection Approach with Minimal Electrodes. Sensors. 2024; 24(13):4256. https://doi.org/10.3390/s24134256
Chicago/Turabian StyleZayed, Aymen, Nidhameddine Belhadj, Khaled Ben Khalifa, Mohamed Hedi Bedoui, and Carlos Valderrama. 2024. "Efficient Generalized Electroencephalography-Based Drowsiness Detection Approach with Minimal Electrodes" Sensors 24, no. 13: 4256. https://doi.org/10.3390/s24134256
APA StyleZayed, A., Belhadj, N., Ben Khalifa, K., Bedoui, M. H., & Valderrama, C. (2024). Efficient Generalized Electroencephalography-Based Drowsiness Detection Approach with Minimal Electrodes. Sensors, 24(13), 4256. https://doi.org/10.3390/s24134256