Current Diagnostic Techniques for Pneumonia: A Scoping Review
Abstract
:1. Introduction
- RQ1: How many major categories are there for pneumonia diagnostic techniques?
- RQ2: What samples (body fluids or signals) have been used for each category and what techniques have been explored so far?
- RQ3: What is the possible course of action for enhancing the current state of the art for pneumonia diagnosis?
2. Materials and Methods
2.1. Study Design
2.2. Identification of Relevant Studies
2.3. Selection of Articles
2.3.1. Data Screening
2.3.2. Inclusion and Exclusion Criteria
- Studies published between 2011 and 2023 in English.
- Studies related to the diagnosis of pneumonia.
- Peer-reviewed publications, preferably in a journal.
- Methods not about the diagnosis of pneumonia.
- Studies published before 2011.
- Studies published in other languages.
- Studies without any validation of proposed methods.
- The estimation method is not properly defined.
- Objectives are not mentioned.
- Reviews, patents, editorial papers, surveys, technical reports, etc., are not included.
2.4. Data Charting
2.5. Summarizing and Reporting the Results
2.6. Patient or Public Involvement
3. Results
3.1. Laboratory-Based Diagnosis
3.2. Acoustic-Based Techniques
3.3. Imaging-Based Techniques
3.4. Physiological-Measurement-Based Techniques
3.5. Results of Additional Papers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Author | Techniques | Sample Type | Evaluation Methods | Data | Comparison with Other Studies or Other Models | Results |
---|---|---|---|---|---|---|
Zhou Li et al. (Jan, 19) [54] | Biomarkers for pneumonia | ECG (electrocardiogram), serum levels of CK, CK-MB, and troponin (creatine kinase, creatine kinase-MB, and heart muscle enzyme) | Mean, standard deviation, one-way ANOVA, and pairwise comparison performed by t-test and (Chi-squared tests) χ2 test | Prospective study | No | CK, CK-MB, and troponin serum levels increased with the severity of the disease |
Naomi J. Gadsby et al. (Apr, 16) [55] | Culture, RT-PCR (real-time polymerase chain reaction) | LRT specimens | Fisher exact test or χ2 test, Shapiro–Wilk W test, Mann–Whitney U test, and t-test | Patients presented to 2 tertiary care hospitals in Edinburgh (UK) over 18 months | Yes | A comprehensive molecular testing approach approximately doubles pathogen detection in patients with CAP from 39.3% to 86.7% |
R. Borgohain et al. (Mar, 17) [56] | Novel ZnO Biosensor | Prepared solutions for the mentioned bacterium | Graphs of voltage and concentration, etc. | Not applicable | No | Maximum response = 96% and 94.375%, min detection limit = 1.12% and 1.01% @ room temperature |
Madieke J. Koster et al. (Jul, 13) [57] | CRP level (C-reactive protein) | Blood samples | (Un)adjusted association between CRP level and pneumonia and the diagnostic value of CRP investigated | Retrospectively collected data from the ED (Antonius Hospital Nieuwegein) | Yes | Mean CRP children with pneumonia = 141 mg/L; without pneumonia = 34 mg/L |
R. Sorde et al. (Jan 11) [58] | Urinary antigen test | Urine samples | Sensitivity, specificity, positive and negative predictive values, as well as positive and negative likelihood ratios | Adults hospitalized with CAP from February 2007 to January 2008 | No | Positive predictive value 88.8% to 96.5% |
S. L. Yang et al. (Oct, 20) [59] | RT-PCR | BAL (bronchoalveolar lavage) and sputum samples | Two-tailed Student’s t-test | 97 BAL samples and 94 sputum samples from 191 patients were used in the study | No | Diagnosis of PCP (pneumocystis pneumonia) should be based on a combination of clinical symptoms, underlying diseases, and PCR (polymerase chain reaction) results due to FP (false positive) in PCR |
Jan C Holter et al. (Feb, 15) [60] | Bacterial cultures, urinary antigen assays, serology compared with swabs | NP and OP swabs (nasopharyngeal and oropharyngeal swab) | McNemar’s test, kappa statistics | 3-year prospective study, Drammen Hospital, Vestre Viken Health Trust | No | The ratio ranged from 14.6 to 19.9 |
A. Ito et al. (Feb, 21) [61] | Urinary antigen | Urine samples | Cross-tabulation table | Study in 6 hospitals in Japan in 32 months, approx. | Yes | The overall match rate between LAC-116 (urinary antigen test kits) and Binax was 96.8% and between LAC-116 and Q-line was 96.4% |
Yuan Lu et al. (Dec, 11) [62] | PCR | URT (upper respiratory tract) specimen | AUC (area under ROC curve) | NA | No | Highest specificity of 0.93 between quantitative PCR analysis and the major surface glycoprotein gene target |
M. A. Elemraid et al. (Jun 2013) [63] | Culture and PCR testing | Blood samples and other fluid samples | p-value analysis | From October 2009 to March 2011 in three hospitals in Northeast England | No | Pneumococcal infections identification rate = 26%. Detection improved with PCR compared to with culture |
F. Esteves et al. (Apr, 15) [64] | Biomarkers for pneumonia | Serum | Chi-square test, Fisher’s exact test, Mann–Whitney U test, Spearman rank-order correlation test, ROC (receiver operating characteristic curve) | Retrospective observational study | Yes | Reliability of markers for PCP diagnosis: (1-3-Beta-D-Glucan) BG > (Krebs von den Lungen-6) KL-6 > (Lactate Dehydrogenase) LDH > (S-adenosylmethionine) SAM. Best combination test = BG/KL-6 |
Y. Jiang et al. (Dec, 20) [65] | Digital PCR | Patient and environmental samples | Comparison of positivity rate | Self-collected | Yes | SARS-CoV-2 was more frequently detected in respiratory tract-derived samples (35.0%) than in non-respiratory tract-derived samples |
D. Xiao et al. (Aug, 12) [66] | MALDI-TOF MS (matrix-assisted laser desorption/ionization (MALDI)–time-of-flight (TOF) analyzer) | Throat swabs | Chi-square test | The prospective study included 70 CAP patients. Compared with Biotyper and SARAMIS databases | Yes | A total of 212 suspicious colonies representing 12 genera and 30 species were identified |
Y. Wang et al. (Jun, 18) [67] | Multiple cross displacement amplification (MCDA) | Sputum | Accuracy, sensitivity | K. pneumoniae-negative sputa (five patients) collected from the Clinical laboratory of Peking University Shougang Hospital | Yes | A temperature of 65 °C was found to be optimal for amplification, and seven K. pneumoniae strains were successfully cultured from positive sputum samples |
B. Medjo et al. (Dec, 14) [68] | RT-PCR and Serology | Throat swabs | Student’s t-test, Mann–Whitney, Chi-square test, and Fisher’s exact test | Prospective study Emergency department of University Children’s Hospital in Belgrade from April 2012 to March 2014 | Yes | The detection of IgM antibodies in conjunction with 8RT-PCR allows for the accurate and reliable diagnosis of Mycoplasma pneumoniae infections in children at a critical stage |
A. Edin et al. (Jul, 20) [69] | PCR panel | NP swabs | Two-by-two contingency tables of categorical variables were analyzed by Fisher’s exact and Wilson–Brown method | Conducted at Umeå University Hospital (Umeå, Sweden) as a prospective method-comparison study | Yes | In 30% of admitted patients, survey results were found to have an impact on treatment decisions |
A. Banerjee et al. (Sep, 20) [70] | Machine learning | Blood samples | AUC, sensitivity, specificity, and accuracy | mindstream.ai public dataset | No | Changes in numerous parameters assessed in the complete blood count for COVID-19-positive individuals with a characteristic immune response profile pattern |
Chih-Min Tsai et al. (Jul, 20) [71] | CRP as a biomarker | Saliva samples | Chi-squared test, t-test statistical correlations using Spearman’s rank correlation test, ROC | Prospective research was carried out on patients aged 2–17 years; 60 healthy children and 106 pediatric patients suffering from pneumonia | Yes | Salivary CRP level pediatric patients with pneumonia = 48.77 ± 5.52 ng/mL healthy = 14.78 ± 3.92 ng/mL (p < 0.001) |
A Omran et al. (Apr, 18) [72] | CRP level, blood counts | Saliva and blood samples | Mann–Whitney U-test, Chi-square, sensitivity, specificity, ROC curve | Prospective case–control research included 70 full-term newborns, 35 with late-onset neonatal pneumonia, and 35 healthy controls | Yes | Salivary CRP means (neonates with late onset) = 6.2 ± 4.6 ng/L versus control neonates = 2.8 ± 1.9 ng/L |
F. Patrucco (Mar,19) [73] | Pneumoni checkTM | Aerosol | Sensitivity, specificity | A prospective single-center observational pilot study | Yes | Excellent specificity and correlation with 10BAL for non-herpes virologic diagnosis in pneumonia patients |
M.C. Minnaard (Jul, 15) [74] | CRP level | Blood sample | AUC, multivariable odd ratios | GRACE network | Yes | Five POC CRP test tools and the lab analyzer detected pneumonia with comparable accuracy in a single test |
Y Saffary et al. (July, 22) | Tetracosane functionalized TiO2 sensor | Expired breath (gas) | Mean, standard deviation | Not tested in vivo | No | The functionalized sensor showed a change in current when exposed to heptane. The sensor response was found to be varied with varying concentrations |
Author | Techniques | Input Parameters | Evaluation Methods | Data | Compared with Related Work | Results | ||||
---|---|---|---|---|---|---|---|---|---|---|
Acc. (Accuracy) | Sen. (Sensitivity) | Spec. (Specificity) | AUC (Area Under ROC Curve) | Other | ||||||
K. Kosasih et al. (Apr, 15) [75] | Wavelet features of cough sounds trained a logistic regression classifier | Cough sound | Sensitivity, specificity | 815 cough sounds from 91 patients with respiratory illnesses | No | (Not reported) NR | 0.94 | 0.88 | NR | NR |
H. Chen et al. (Mar, 19) [76] | Optimized S-transform (OST) and deep residual networks (ResNets), | Respiratory sound | Classification accuracy, confusion matrix, standard error, standard precision | Biomedical Health Informatics (ICBHI) scientific challenge database | Yes | 0.9879 | 0.9627 | 1 | NR | NR |
P. Porter (Mar, 21) [77] | Smartphone-based algorithm | Cough sound | Percentage agreement (PA), AUC | A prospective cohort study in a hospital in Western Australia | No | NR | NR | NR | 0.94–0.95 | PPA = 86.2%, NPA = 86.5% |
Eric D. McCollum et al. (Sep, 20) [78] | Random-effects regression model | Chest sounds | T-test, Pearson, χ2(Chi-squared test), or Fisher exact test. Multiple logistic regression | Prospectively enrolled hospital cases and community controls over two years in seven countries | Yes | Wheezing among children autonomously associated with lower odds of radiographic pneumonia | ||||
A. Rao et al. (Aug, 18) [79] | K-nearest neighbor | Chest sounds | Accuracy, frequency spectrum | Clinical data collected from UCSF Medical Center | No | 0.923 | NR | NR | NR | NR |
A. Imran et al. (2020) [80] | Distinctness of pathomorphological alterations in the respiratory system | Cough sound | Accuracy, specificity, sensitivity/recall, F1 score | ESC-50 dataset [62], self-collected via app | No | 0.956 | 0.8914 | 0.9667 | NR | F1 Score: 0.8952 precision 0.8991 |
RK Tripathy et al. (May 2022) [81] | Time and frequency features from sound, employed various classifiers for different classes | Chest sounds | Accuracy | M. Fraiwan et al. dataset [82] | Yes | Accuracy SVM: 80.35; Random Forest: 83.27; extreme gradient boosting: 99.34; and light gradient boosting machine (LGBM): 77.13% |
Author | Techniques | Evaluation Methods | Data | Compared with Related Work | Results | |||||
---|---|---|---|---|---|---|---|---|---|---|
Acc. (Accuracy) | Sen. (Sensitivity) | Spec. (Specificity) | F1 Score | AUC (Area under ROC Curve) | Other | |||||
Yaoming Lai et al. (Oct, 2020) [83] | Multiscale deep convolutional neural network (DCNN) | ROC curve (receiver operating characteristic curve), accuracy, specificity, sensitivity, AUC | Two hospitals’ retrospective study data | Yes | 0.861 | 0.757, 0.757 | 0.952, 0.815 | (Not Reported) NR | 5% | NR |
G. Wang et al. (Aug, 2020) [84] | 2D convolutional neural network for segmentation + COPLE net (COVID-19 pneumonia lesion segmentation network) | Paired T-test | Ten hospitals’ retrospective study data | Yes | NR | NR | NR | NR | NR | Dice % COPLE-NET 80.29+−11.14 |
Z. Wang et al. (Oct, 2020) [85] | Novel joint learning based on COVID-Net | p values for paired t-test | SARS-CoV-2 and COVID-CT data | Yes | NR | NR | NR | NR | 12.16%, 14.23% | NR |
Q. Wang et al. (May, 2020) [86] | Deep regression framework and RCNN (region-based convolutional neural network) based on ResNet-50 | Accuracy, sensitivity, specificity, and F1 score | Radiology department dataset | Yes | Improves by 2.3% | Improves by 3.1% | NR | NR | BR | NR |
H. Kang et al. (May, 2020) [87] | Backward neural networks | Accuracy, sensitivity, and specificity | Three hospitals’ and collaborator’s study data | Yes | 0.95 | 0.966 | 0.932 | NR | NR | NR |
X. Ouyang et al. (May, 2020) [88] | Novel online attention module with a 3D CNN (convolutional neural network) | ROC curve, AUC, sensitivity, specificity, F1 score | Eight hospital COVID-19 patients’ CT data | No | 87.50% | 86.90% | 90.10% | 82.00% | 0.944 | NR |
D.P. Fan et al. (Apr, 2020) [89] | Semi-supervised segmentation framework (propagation strategy) | Dice similarity coefficient, mean absolute error | COVID-19 CT segmentation dataset | Yes | NR | 0.725 | 0.960 | NR | NR | (Mean absolute error) MAE: Semi Inf.net = 0.082 Inf Net (Dice Similarity Coefficient) DSC = 0.064. DSC: Semi Inf.net = 0.682 Inf Net DSC = 0.739 |
X. Qian et al. (Dec, 2020) [90] | Deep learning made of two 2D CNN networks | TPR, TNR, TP, TN (true positive rate, true negative rate, true positive, true negative), false positive/negative error, false disease prediction error, ROC, AUC | Hospital information system data | Yes | 95.21% | NR | NR | NR | NR | FP 2.83% and FN 4.15% |
H.Y. Pei et al. (Mar, 21) [91] | A multi-point supervised training structure, implemented into MPS-Net (multi-point supervised network) | Dice similarity coefficient (DSC), sensitivity, specificity, and IOU | Not reported | Yes | NR | 84.06% | 84.06% | NR | NR | DSC = 0.8235 and IOU = 0.742 |
J. Wang et al. (May, 2020) [92] | Double 3D-ResNets using prior-attention strategy | AUC | Multiple hospitals’ CT images | Yes | NR | NR | NR | NR | 97.3% | NR |
D. Wu et al. (Oct, 2020) [93] | Hybrid weak label-based deep learning method. Based on UNet and EM algorithms. | Box plots, TPR, FPR, Mann–Whitney U test, Pearson correlation coefficient | International multi-retrospective studies’ data | No | NR | NR | NR | NR | NR | Severity segmentation, Pearson correlation coefficient of r = 0.825 (p < 0.001) |
L. Li et al. (Mar, 2020) [94] | COVNet framework consists of RestNet50 | AUC, sensitivity, and specificity, analysis of variance tests, and Chi-squared tests | Six hospitals’ retrospective and multicenter study data | No | NR | 90% | 96% | NR | 0.96 | NR |
X. Wu et al. (Jul, 2020) [95] | Trained a multi-view fusion model based on the architecture of ResNet50. | AUC, Mann–Whitney U test, and Chi-square test | Three hospitals’ retrospective study data | Yes | Validation: 0.7, test: 0.760 | Validation 0.730, test: 0.811 | Validation0.615 test: 0.615 | Validation: 0.732 test: 0.819 | NR | |
K. Wang et al. (May, 2020) [96] | Correlation between the severity of chest infection, lymphocyte ratio, and SpO2 (blood oxygen saturation, usually in percentage) | Mean, standard deviation, median value interquartile range, case numbers, and percentages. Spearman’s test | 114 confirmed COVID-19 patients’ retrospective study data | Yes | NR | NR | NR | NR | NR | CT results have a negative correlation with SpO2 (r = −0.446), and lymphocyte numbers (r = −0.780) |
A. Oulefki et al. (Nov, 2020) [97] | Present an approach to enhance and segment images | Accuracy, sensitivity, F-measure, precision, MCC, Dice, Jacquard, and specificity | COVID-19 patient CT image dataset | Yes | 0.98 | 0.71 | 0.99 | 0.73 | NR | Precision = 0.723, MCC = 0.71, Dice Jacquard = 0.71 and specificity = 0.57 |
M. Pennisi et al. (May, 2021) [98] | Tiramisu architecture-based segmentation model and a fully convolutional DenseNet in a U-Net architecture | Chi-squared test, AUC, Sensitivity, specificity | Prospective study, 166 CT scans overall | Yes | 0.84 | 0.93 | 93.5 | NR | NR | NR |
M. Polsinelli et al. (Dec, 2020) [99] | A light CNN based on SqueezeNet | Accuracy, sensitivity, specificity, precision, F1 score | Two different datasets | Yes | 0.8503 | NR | NR | NR | NR | Improvement of 3.2% in the first dataset arrangement and 2.1% in the second |
Author | Techniques | Evaluation Techniques | Data | Compared with Related Work | Results | ||||
---|---|---|---|---|---|---|---|---|---|
Acc. (Accuracy) | Sen. (Sensitivity) | Spec. (Specificity) | AUC (Area under ROC Curve) | Other | |||||
V. Chouhan et al. (Jan, 2020) [100] | Transfer learning using AlexNet, DenseNet121, InceptionV3, resNet18, and GoogLeNet | Accuracy, AUC, ROC (receiver operating characteristic curve) | Dataset of Guangzhou Women and Children’s Medical Center | Yes | Ensemble model: 0.96395 | NR (Not reported) | NR | Ensemble model: 99.34% | Recall 99.62% |
Jilian D. Londono et al. (Dec, 2020) [101] | Deep CNN | Test positive predictive value, sensitivity, F1 score, accuracy, balanced accuracy geometric, and area under the ROC curve | ACT, China set, Montgomery, CRX8, CheXpert, and MIMIC datasets; COVID-19, BIMCV, ACT, and HM Hospital datasets. | No | 0.915 | 0.874 | NR | NR | NR |
M. E. H. Chowdhary et al. (Jun, 2020) [102] | CNN (convolutional neural network) models | Comparison of the ROC curve for normal, COVID-19, and viral pneumonia | Kaggle database [30] | Yes | 0.997, 0.979 | 0.997, 0.979 | 0.995, 0.988 | NR | DenseNet201 outperforms other different deep CNN networks |
X. Yu et al. (Jan, 2021) [103] | Deep learning using CGNet | Sensitivity, specificity, accuracy, precision, F1 score, ROC curves | Dataset 1: bacterial pneumonia. Dataset2: COVID-19-induced pneumonia | Yes | Dataset 1: 0.9872 dataset2: 0.99 | Dataset 1: 1 Dataset2:0.98 | Dataset 1: 0.9795 Dataset2: 1 | NR | NR |
P. Rajpurkar et al. (Dec, 2017) [104] | 121-layer CNN called Chexnet | F1 Score | Chest X-ray 14 | Yes | NR | NR | NR | NR | Chest X-ray 14 achieves state-of-the-art results |
P. Chhikara et al. (Oct, 2019) [105] | Deep CNN model with transfer learning | Classification matrices, ROC curve | Database from Guangzhou Women and Children’s Medical Center | Yes | 0.901 | 0.957 | NR | NR | F1 score: 0.931 Precision 0.907 |
M. M. Ahsan et al. (Feb, 2021) [106] | Proposed and tested six modified deep learning models: 1. VGG16; 2. Inception ResNetV; 3. ResNet50; 4. MobileNetV2; 5. ResNet101; and 6. VGG19 | Accuracy, precision, recall, F1 score, paired t-test | Study One: smaller, balanced dataset: obtained from the open-source repository. Study Two: larger, imbalanced dataset: obtained from the Kaggle COVID-19 chest X-ray dataset. Study Three: multiclass dataset | Yes | 0.91 | NR | NR | NR | Models like Inception ResNetV2 and VGG19 demonstrated an accuracy of 97% on both datasets |
K.K. Singh et al. (Feb, 21) [107] | CNN using wavelet decomposition | Accuracy, sensitivity, and F1 measure | A total of 1439 images from the three classes are available | Yes | 0.9583 | 0.9607 | NR | NR | Precision = 0.956, F1 score = 0.9563 |
Ahishali et al. (Jun, 2200) [108] | Convolutional Support Estimator Network (CSEN) | Accuracy, sensitivity, specificity | Early-QaTa COVID-19 | Yes | NR | 0.97 | 0.997 | NR | NR |
C. J. Saul et al. (Apr, 2019) [109] | Deep learning architecture for the classification task | Accuracy | RSNA (Radiological Society of North America) dataset | Yes | 0.7873 | NR | NR | NR | NR |
S. Yao et al. (Mar, 2020) [110] | GeminiNet to identify and localize, DetNet59 to capture deep features | Mean average precision, AUC, ROC | RSNA dataset | Yes | NR | NR | NR | NR | NR |
E Rozenberg et al. (Apr, 2021) [111] | Neural network architecture uses Conditional random field layers | Intersection-over-union and intersection-over-region | RSNA dataset, NIH (National Institute of Health) chest X-ray dataset | Yes | Max IoU accuracy: 0.924+−0.06, max IoR accuracy = 0.935 + −0.07 | NR | NR | NR | IoU accuracy = 0.918 ± 0.07, IOR accuracy = 0.933 ± 0.06 |
A. A. Saraiva et al. (Jan, 2019) [112] | Multilayer perceptron and CNN | Confusion matrix | CXR data set, Guangzhou Women and Children’s Medical Centre | Yes | 94.40% | NR | NR | NR | NR |
J.X. Wu et al. (Jun, 2020) [113] | Multilayer machine vision bases classifier | Mean recall, mean precision, mean accuracy, and mean F1 score | NIH chest X-ray database | No | 0.8537 | 0.9868 | NR | NR | Mean precision = 82.42%, mean F1 score = 0.8981 |
R. G. Babukarthik et al. (Sep, 2020) [114] | Genetic deep learning CNN | Accuracy, sensitivity, specificity, F1 score confusion matrix | Custom-built dataset from GitHub | Yes | 0.9884 | 0.93–1 | 0.97 | NR | NR |
J. Zhang et al. (Mar, 21) [115] | Confidence-Aware Anomaly Detection (CAAD) model | AUC, sensitivity, specificity, accuracy | X-VIRAL and XCOVID datasets | Yes | NR | 0.717 | NR | 83.61% | NR |
G. Liang et al. (Apr, 20) [116] | A deep learning + residual thought + dilated convolution using the Keras framework | Precision, recall, F1 score, accuracy, AUC, ROC, confusion matrices | CXR dataset by Kermany et al. [117] | Yes | NR | 0.967 | NR | NR | F1 score = 92.7%. |
O. Stephen et al. (Mar, 19) [118] | CNN model (Keras open-source deep learning framework) + tensor flow backend | Training accuracy | Retrospective pediatric patients between 1 and 5 years old | No | 0.9531 | NR | NR | NR | Training loss: 0.1288, validation loss: 0.1835 |
Y. Xu et al. (July, 21) [119] | MANet, segmentation model based on ResNet (Residual Network) classic CNNs with or without MA | Confusion matrix, accuracy, precision, recall, F1 score, attenuation heat maps | CXR dataset by Kermany et al. [117], Montgomery County and Shenzhen No. 3 People’s Hospital, and open public dataset on GitHub for COVID-19 | Yes | 0.9631 | NR | NR | NR | ResNet50 accuracy = 96.32% |
M. Yaseliani et al. (June, 2022) | Hybrid CNN, three classification approaches | Accuracy, precision, recall, specificity, and F1 score | CXR dataset by Kermany et al. [117] | No | 98.55 | NR | NR | NR | - |
A. Chharia et al. (Feb, 2022) | De novo biologically inspired Conv-Fuzzy network is developed | Accuracy, precision, recall, F1 score | Kaggle CXR dataset, COVID-CXR dataset [120] | No | Binary class 97.47, multiclass 90.68 | Binary 97.46, multiclass 90.67 | Binary 97.46 multi-class 90.70 | NR | - |
Author | Techniques | Evaluation Methods | Data | Compared with Related Work | Results | ||||
---|---|---|---|---|---|---|---|---|---|
Acc. (Accuracy) | Sen. (Sensitivity) | Spec. (Specificity) | AUC (Area under ROC Curve) | Other | |||||
MM.C. Ho et al. (Jul, 15) [121] | LUS scan features + chest X-ray + LUS | Mean, standard deviation values, numbers, and percentages | Three-year retrospective study data | Yes | 0.9754 | NR (Not reported) | NR | NR | NR |
S. Roy et al. (May, 20) [122] | Deep network made from Spatial Transformer Network | The mean and standard deviation of the weighted F1 score, precision, and sensitivity | Italian COVID-19 Lung Ultrasound Database (ICLUS-DB) | Between various models and subsets of the original dataset | NR | NR | NR | NR | Reg-STN (Regression Spatial Transformer Network) performs the best amongst all baselines |
Laura E. Ellington et al. (May, 17) [123] | A pediatrician’s clinical assessment and lung ultrasound | Sensitivity, specificity, AUC | A prospective study for primary respiratory complaints at the Instituto Nacional de Salud del Ni~no in Lima, Peru | Yes | NR | 0.885 | 1 | 0.94 | NR |
S. Ottaviani et al. (Aug, 20) [124] | All patients had their lungs examined with HRCT and ultrasonography by separate operators who were blinded to each other’s results | Wilcoxon’s chi-square test, Kruskal–Wallis, correlation by the Spearman correlation coefficient. | Prospective single-center study | Yes | NR | NR | NR | NR | Correlation between the ultrasound score for B lines and the classification (p < 0.01) and percentage of lung involvement on chest HRCT: r = 0.935, p < 0.001 |
A. Reissig et al. (Oct, 12) [125] | LUS, reference test and follow-up performed | Sensitivity, specificity, likelihood ratio, Bland–Altman plots | Prospective, multicenter study: enrolled in 14 European centers. | Yes | NR | 0.934 | 0.977 | NR | For positive likelihood ratios = 40.5 (95% CI (confidence interval), 13.2-123.9), negative likelihood 0.07 (95% CI, 0.04–0.11) |
J. Lovrenski et al. (2016) [126] | In one hour, LUS and auscultatory procedures were performed | McNemar’s test | Seven-month prospective study data | Yes | 67/95 | NR | NR | NR | Lung ultrasound showed a positive finding in more hemi-thoraces than auscultation (in children with clinically suspected pneumonia) |
C. Biagi et al. (Dec, 18) [127] | LUS was performed in each child by a pediatrician without a patient chart and history | Cohen’s Kappa test, chi-square test, Mann–Whitney test, sensitivity, specificity, positive predictive value and negative predictive value, spearman’s Correlation coefficient | A prospective study performed at the Pediatric Emergency Unit of S. Orsola-Malpighi Hospital (Bologna, Italy) in association with the Pediatric Radiology Unit (2016–2017) | Yes | NR | 1 | 0.839 | 92% | When only consolidation > 1 cm was considered consistent with pneumonia, the specificity of LUS increased to 98.4%, and the sensitivity decreased to 80.0% |
L. Ambroggio et al. (Jun, 16) [128] | Four pediatric radiologists who were not aware of the patient’s condition were assessed on the CXR and LUS scans | Median and IQR for continuous variables and for categorical variables. For diagnosis, count and percentage, IRR, sensitivity, specificity, Kappa | A prospective cohort study of children with a CXR and LUS performed with or without a clinical diagnosis of pneumonia (1 May 2012, to 31 January 2014) | Yes | NR | NR | NR | NR | Pneumonia was clinically documented in 47 patients (36%) |
G. Tan et al. (Jun, 20) [129] | Interstitial lung disease was used to evaluate the severity of COVID-19 on ultrasonography evaluated by the modified Buda scoring system. | Wilcoxon rank-sum tests, chi-square or Fisher exact tests for categorical variables, Pearson correlation | One-month prospective study data | Yes | NR | NR | NR | NR | Differences in ultrasonic features between COVID-19 and CAP were statistically significant |
G. Muhammad et al. (Aug, 21) [130] | Model of a CNN (convolutional neural network) | Confusion matrix, ROC, AUC | POCUS (point-of-care ultrasound) dataset | Yes | 0.866, 0.925 | NR | NR | NR | NR |
Vaishali P. Shah et al. (Feb, 13) [131] | Clinicians with 1 hour of focused training used ultrasonography | Likelihood ratios, sensitivity, and specificity with 95% CIs | A prospective observational cohort study in two urban ERs (emergency rooms) | Yes | NR | 0.86 | 0.89 | NR | Positive LR = 7.8 (95% CI, 5.0–12.4), negative LR = 0.2 (95% CI, 0.1–0.4) |
Y. Wang et al. (Aug, 21) | SVM classifier on pleural line and B line features to determine three categories of COVID-19 pneumonia: moderate, severe, and critical | Correlation between features and disease severity, ROC, AUC, specificity, sensitivity | 27 COVID-19 patients | No | NR | 0.93 | 1 | NR | ROC = 0.96 |
Authors | Techniques | Input Parameters | Evaluation Methods | Data | Compared with Related Work | Results |
---|---|---|---|---|---|---|
W. Karlen et al. (Jul, 13) [132] | Pulse oximetry | PPG/pulse oximetry | ANOVA (analysis of variance) for the test dataset | Collected physiological data to calibrate the algorithms and evaluate the RR estimation performance | No | The mean RMS (root mean square) error (±1 SD (standard deviation)) of the smart fusion (3 ± 4.7 breaths/min) |
Mei-Jing Ly et al. (Jan, 20) [133] | EEG (electroencephalogram), PPG (photoplethysmogram), stethoscope, smart dog | Sensors took vital signs | Pie charts | NR (not reported) | No | Most of the caregivers were satisfied |
K. Mala et al. (Oct, 16) [134] | RR, HR (heart rate), SpO2, and body temperature | Sensors took vital signs | Experimental data into graphs | NR | No | Zero difference in vital sign measurement between the proposed and conventional devices |
T. Salti et al. (Dec, 19) [135] | RR (respiratory rate), SpO2 (oxygen saturation in blood, usually given in percentage) | Sensors took vital signs | Shapiro–Wilk test, paired t-test, Pearson coefficients, Bland–Altman analysis | NR | Yes | Mean, standard deviation and 95 CI (confidence interval) for SpO2 = 97.2%, 1.3%, 96–98%; for RR = 18.6%, 5.4%, 14.4–22.7 |
Shih-Wen Chiu et al. (Dec, 14) [136] | CMOsGas sensor | Expired gas | Accuracy | Clinical experiment at Taipei Medical University, Taiwan. | Yes | 100% accuracy to identify the microorganisms of Klebsiella, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida from VAP-infected patients was achieved |
S. Doulou et al. (Nov, 20) [137] | Novel optical biosensor (OB) | Sensor data | AUC (area under ROC curve), ROC (receiver operating characteristic curve), sensitivity, specificity, | A clinical study was conducted in four study sites in two phases | Yes, with the gold standard | Sensitivity = 83.3%, negative predictive value = 87.5% |
References
- Mathers, C.; Stevens, G.; Hogan, D.; Mahanani, W.R.; Ho, J. Global and Regional Causes of Death: Patterns and Trends, 2000–2015. In Disease Control Priorities: Improving Health and Reducing Poverty, 3rd ed.; The World Bank: Washington, DC, USA, 2017; Volume 9, pp. 69–104. [Google Scholar] [CrossRef]
- McAllister, D.A.; Liu, L.; Shi, T.; Chu, Y.; Reed, C.; Burrows, J.; Adeloye, D.; Rudan, I.; Black, R.E.; Campbell, H.; et al. Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: A systematic analysis. Lancet Glob. Health 2019, 7, e47–e57. [Google Scholar] [CrossRef] [PubMed]
- CME Info—Child Mortality Estimates. Available online: https://childmortality.org/ (accessed on 22 August 2020).
- Grimwood, K.; Chang, A.B. Long-term effects of pneumonia in young children. Pneumonia 2015, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, G. The definition and classification of pneumonia. Pneumonia 2016, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Community-Acquired Pneumonia–Pulmonary Disorders–MSD Manual Professional Edition. Available online: https://www.msdmanuals.com/professional/pulmonary-disorders/pneumonia/community-acquired-pneumonia (accessed on 3 June 2021).
- Hospital Acquired Pneumonia–Pulmonology Advisor. Available online: https://www.pulmonologyadvisor.com/home/decision-support-in-medicine/pulmonary-medicine/hospital-acquired-pneumonia/ (accessed on 3 June 2021).
- Averjanovaitė, V.; Saikalytė, R.; Cincilevičiūtė, G.; Kučinskaitė, G.; Mačiulytė, D.; Kontrimas, A.; Maksimaitytė, V.; Zablockis, R.; Danila, E. Risk factors for early onset severe community-acquired pneumonia complications. Eur. Respir. J. 2018, 52, PA1973. [Google Scholar] [CrossRef]
- Mbata, G.; Chukwuka, C.; Onyedum, C.; Onwubere, B.; Aguwa, E. The role of complications of community acquired pneumonia on the outcome of the illness: A prospective observational study in a tertiary institution in Eastern Nigeria. Ann. Med. Health Sci. Res. 2013, 3, 365. [Google Scholar] [CrossRef] [PubMed]
- Welte, T.; Torres, A. Nathwani. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax 2012, 67, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.L.; Le Jeune, I.; Woodhead, M.A.; Macfarlane, J.T.; Lim, W.S. Primary care summary of the British Thoracic Society guidelines for the management of community acquired pneumonia in adults: 2009 Update. Prim. Care Respir. J. 2010, 19, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Overview of Community-Acquired Pneumonia in Adults–UpToDate. Available online: https://www.uptodate.com/contents/overview-of-community-acquired-pneumonia-in-adults (accessed on 7 June 2021).
- Reynolds, A.R. Pneumonia: The new ‘captain of the men of death.’: Its increasing prevalence and the necessity of methods for its restriction. J. Am. Med. Assoc. 1903, XL, 583–586. [Google Scholar] [CrossRef]
- Witzenrath, M.; Kuebler, W.M. Pneumonia in the face of COVID-19. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L863–L866. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, H.L.; Levac, D.; O’Brien, K.K.; Straus, S.; Tricco, A.C.; Perrier, L.; Kastner, M.; Moher, D. Scoping reviews: Time for clarity in definition, methods, and reporting. J. Clin. Epidemiol. 2014, 67, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Serra-Batlles, J.; Ferrer, A.; Jiménez, P.; Celis, R.; Cobo, E.; Rodriguez-Roisin, R. Severe community-acquired pneumonia. Epidemiology and prognostic factors. Am. Rev. Respir. Dis. 1991, 144, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Melbye, H.; Hvidsten, D.; Holm, A.; Nordbø, A.; Brox, J. The course of C-reactive protein response in untreated upper respiratory tract infection. Br. J. Gen. Pract. 2004, 54, 653–658. [Google Scholar] [PubMed]
- Mandell, L.A.; Wunderink, R.G.; Anzueto, A.; Bartlett, J.G.; Campbell, G.D.; Dean, N.C.; Dowell, S.F.; File, T.M., Jr.; Musher, D.M.; Niederman, M.S.; et al. Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the management of community-acquired pneumonia in adults. Clin. Infect. Dis. 2007, 44, S27–S72. [Google Scholar] [CrossRef] [PubMed]
- Andronikou, S.; Goussard, P.; Sorantin, E. Computed tomography in children with community-acquired pneumonia. Pediatr. Radiol. 2017, 47, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Orso, D.; Ban, A.; Guglielmo, N. Lung ultrasound in diagnosing pneumonia in childhood: A systematic review and meta-analysis. J. Ultrasound 2018, 21, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Bourcier, J.E.; Braga, S.; Garnier, D. Lung Ultrasound Will Soon Replace Chest Radiography in the Diagnosis of Acute Community-Acquired Pneumonia. Curr. Infect. Dis. Rep. 2016, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.K.; Awasthi, S.; Parihar, A. Lung Ultrasound is Comparable with Chest Roentgenogram for Diagnosis of Community-Acquired Pneumonia in Hospitalised Children. Indian J. Pediatr. 2017, 84, 499–504. [Google Scholar] [CrossRef]
- Sergunova, K.; Bazhin, A.; Masri, A.; Vasileva, Y.N.; Semenov, D.; Kudryavtsev, N.; Panina, O.Y.; Khoruzhaya, A.; Zinchenko, V.; Akhmad, E.; et al. Chest MRI of patients with COVID-19. Magn. Reson. Imaging 2021, 79, 13–19. [Google Scholar] [CrossRef]
- Jackson, K.; Butler, R.; Aujayeb, A. Lung ultrasound in the COVID-19 pandemic. Postgrad. Med. J. 2021, 97, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Franquet, T. Imaging of pneumonia: Trends and algorithms. Eur. Respir. J. 2001, 18, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Nambu, A. Imaging of community-acquired pneumonia: Roles of imaging examinations, imaging diagnosis of specific pathogens and discrimination from noninfectious diseases. World J. Radiol. 2014, 6, 779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ren, F.; Li, Y.; Na, L.; Ma, Y. Pneumonia Detection from Chest X-ray Images Based on Convolutional Neural Network. Electronics 2021, 10, 1512. [Google Scholar] [CrossRef]
- COVID-19 Radiography Database|Kaggle. Available online: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database (accessed on 31 May 2021).
- Chest X-ray Images (Pneumonia)|Kaggle. Available online: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (accessed on 7 June 2021).
- Durant, A.; Nagdev, A. Ultrasound detection of lung hepatization. West J. Emerg. Med. 2010, 11, 322–323. [Google Scholar] [PubMed]
- McDermott, C.; Łącki, M.; Sainsbury, B.; Henry, J.; Filippov, M.; Rossa, C. Sonographic Diagnosis of COVID-19: A Review of Image Processing for Lung Ultrasound. Front. Big Data 2021, 4, 612561. [Google Scholar] [CrossRef] [PubMed]
- Wanasinghe, T.; Bandara, S.; Madusanka, S.; Meedeniya, D.; Bandara, M.; Diez, I.D.L.T. Lung Sound Classification with Multi-Feature Integration Utilizing Lightweight CNN Model. IEEE Access 2024, 12, 21262–21276. [Google Scholar] [CrossRef]
- Kanwal, K.; Khalid, S.G.; Asif, M.; Zafar, F.; Qurashi, A.G. Diagnosis of Community-Acquired pneumonia in children using photoplethysmography and Machine learning-based classifier. Biomed. Signal Process. Control 2024, 87, 105367. [Google Scholar] [CrossRef]
- QuickStats: Death Rates* from Influenza and Pneumonia† Among Persons Aged ≥65 Years, by Sex and Age Group—National Vital Statistics System, United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1470. [CrossRef] [PubMed]
- Ostapchuk, M.; Roberts, D.M.; Haddy, R. Community-Acquired Pneumonia in Infants and Children. Am. Fam. Physician 2004, 70, 899–908. [Google Scholar] [PubMed]
- Li, W.; Ding, C.; Yin, S. Severe pneumonia in the elderly: A multivariate analysis of risk factors. Int. J. Clin. Exp. Med. 2015, 8, 12463. [Google Scholar]
- Coronavirus Pandemic (COVID-19)–the Data–Statistics and Research–Our World in Data. Available online: https://ourworldindata.org/coronavirus-data (accessed on 7 June 2021).
- Dallas, J.; Kollef, M. Severe hospital-acquired pneumonia: A review for clinicians. Curr. Infect. Dis. Rep. 2009, 11, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Al-Omari, B.; McMeekin, P.; Allen, A.J.; Akram, A.R.; Graziadio, S.; Suklan, J.; Jones, W.S.; Lendrem, B.C.; Winter, A.; Cullinan, M.; et al. Systematic review of studies investigating ventilator associated pneumonia diagnostics in intensive care. BMC Pulm. Med. 2021, 21, 196. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Waterer, G.W. Community-Acquired Pneumonia. N. Engl. J. Med. 2014, 370, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Christ-Crain, M.; Opal, S.M. Clinical review: The role of biomarkers in the diagnosis and management of community-acquired pneumonia. Crit. Care 2010, 14, 203. [Google Scholar] [CrossRef] [PubMed]
- Povoa, P. Serum markers in community-acquired pneumonia and ventilator-associated pneumonia. Curr. Opin. Infect. Dis. 2008, 21, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Xiao, H.; Chen, B.; Zhang, S. Accuracy of Lung Ultrasonography versus Chest Radiography for the Diagnosis of Adult Community-Acquired Pneumonia: Review of the Literature and Meta-Analysis. PLoS ONE 2015, 10, e0130066. [Google Scholar] [CrossRef] [PubMed]
- Stokes, K.; Castaldo, R.; Federici, C.; Pagliara, S.; Maccaro, A.; Cappuccio, F.; Fico, G.; Salvatore, M.; Franzese, M.; Pecchia, L. The use of artificial intelligence systems in diagnosis of pneumonia via signs and symptoms: A systematic review. Biomed. Signal Process. Control 2022, 72, 103325. [Google Scholar] [CrossRef]
- Gentilotti, E.; De Nardo, P.; Cremonini, E.; Górska, A.; Mazzaferri, F.; Canziani, L.M.; Hellou, M.M.; Olchowski, Y.; Poran, I.; Leeflang, M.; et al. Diagnostic accuracy of point-of-care tests in acute community-acquired lower respiratory tract infections. A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Heidari, A.; Navimipour, N.J.; Unal, M.; Toumaj, S. The COVID-19 epidemic analysis and diagnosis using deep learning: A systematic literature review and future directions. Comput. Biol. Med. 2022, 141, 105141. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, Z. Neuro-Imaging Facilities in Pakistan. J. Pak. Med. Assoc. 2003, 53, 621–623. [Google Scholar]
- Li, G.; Li, X.; Song, X.; Zeng, Y. Edge Blockchain Construction Efficiency Maximization for COVID-19 Detection in a Body Area Network. IEEE Access 2022, 10, 79986–79998. [Google Scholar] [CrossRef]
- Gilbert, S. The EU passes the AI Act and its implications for digital medicine are unclear. npj Digit. Med. 2024, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Keane, P.A.; Topol, E.J. With an eye to AI and autonomous diagnosis. npj Digit. Med. 2018, 28, 40. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Gattinger, G. The Evolving Regulatory Paradigm of AI in MedTech: A Review of Perspectives and Where We Are Today. Ther. Innov. Regul. Sci. 2024, 58, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, X.; Zhu, Z.; Zeng, S.; Wang, Y.; Wang, Y.; Li, A. Signal Analysis of Electrocardiogram and Statistical Evaluation of Myocardial Enzyme in the Diagnosis and Treatment of Patients with Pneumonia. IEEE Access 2019, 7, 113751–113759. [Google Scholar] [CrossRef]
- Gadsby, N.J.; Russell, C.D.; McHugh, M.P.; Mark, H.; Morris, A.C.; Laurenson, I.F.; Hill, A.T.; Templeton, K.E. Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia. Clin. Infect. Dis. 2016, 62, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Borgohain, R.; Baruah, S. Development and testing of zno nanorods based biosensor on model gram-positive and gram-negative bacteria. IEEE Sens. J. 2017, 17, 2649–2653. [Google Scholar] [CrossRef]
- Koster, M.J.; Broekhuizen, B.D.; Minnaard, M.C.; Balemans, W.A.; Hopstaken, R.M.; de Jong, P.A.; Verheij, T.J. Diagnostic properties of C-reactive protein for detecting pneumonia in children. Respir. Med. 2013, 107, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Sordé, R.; Falcó, V.; Lowak, M.; Domingo, E.; Ferrer, A.; Burgos, J.; Puig, M.; Cabral, E.; Len, O.; Pahissa, A. Current and potential usefulness of pneumococcal urinary antigen detection in hospitalized patients with community-acquired pneumonia to guide antimicrobial therapy. Arch. Intern. Med. 2011, 171, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-L.; Wen, Y.-H.; Wu, Y.-S.; Wang, M.-C.; Chang, P.-Y.; Yang, S.; Lu, J.-J. Diagnosis of Pneumocystis pneumonia by real-time PCR in patients with various underlying diseases. J. Microbiol. Immunol. Infect. 2020, 53, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Holter, J.C.; Müller, F.; Bjørang, O.; Samdal, H.H.; Marthinsen, J.B.; Jenum, P.A.; Ueland, T.; Frøland, S.S.; Aukrust, P.; Husebye, E.; et al. Etiology of community-acquired pneumonia and diagnostic yields of microbiological methods: A 3-year prospective study in Norway. BMC Infect. Dis. 2015, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Yamamoto, Y.; Ishii, Y.; Okazaki, A.; Ishiura, Y.; Kawagishi, Y.; Takiguchi, Y.; Kishi, K.; Taguchi, Y.; Shinzato, T.; et al. Evaluation of a novel urinary antigen test kit for diagnosing Legionella pneumonia. Int. J. Infect. Dis. 2021, 103, 42–47. [Google Scholar] [CrossRef]
- Lu, Y.; Ling, G.; Qiang, C.; Ming, Q.; Wu, C.; Wang, K.; Ying, Z. PCR diagnosis of Pneumocystis pneumonia: A bivariate meta-analysis. J. Clin. Microbiol. 2011, 49, 4361–4363. [Google Scholar] [CrossRef] [PubMed]
- Elemraid, M.A.; Sails, A.D.; Thomas, M.F.; Rushton, S.P.; Perry, J.D.; Eltringham, G.J.; Spencer, D.A.; Eastham, K.M.; Hampton, F.; Gennery, A.R.; et al. Pneumococcal diagnosis and serotypes in childhood community-acquired pneumonia. Diagn. Microbiol. Infect. Dis. 2013, 76, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Esteves, F.; Calé, S.; Badura, R.; de Boer, M.; Maltez, F.; Calderón, E.; van der Reijden, T.; Márquez-Martín, E.; Antunes, F.; Matos, O. Diagnosis of Pneumocystis pneumonia: Evaluation of four serologic biomarkers. Clin. Microbiol. Infect. 2015, 21, 379.e1–379.e10. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, H.; Hao, S.; Chen, Y.; He, J.; Liu, Y.; Chen, L.; Yu, Y.; Hua, S. Digital PCR is a sensitive new technique for SARS-CoV-2 detection in clinical applications. Clin. Chim. Acta 2020, 511, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Zhao, F.; Lv, M.; Zhang, H.; Zhang, Y.; Huang, H.; Su, P.; Zhang, Z.; Zhang, J. Rapid identification of microorganisms isolated from throat swab specimens of community-acquired pneumonia patients by two MALDI-TOF MS systems. Diagn. Microbiol. Infect. Dis. 2012, 73, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, W.; Wang, Y.; Xu, J.; Ye, C. Rapid, sensitive and reliable detection of Klebsiella pneumoniae by label-free multiple cross displacement amplification coupled with nanoparticles-based biosensor. J. Microbiol. Methods 2018, 149, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Medjo, B.; Atanaskovic-Markovic, M.; Radic, S.; Nikolic, D.; Lukac, M.; Djukic, S. Mycoplasma pneumoniae as a causative agent of community-acquired pneumonia in children: Clinical features and laboratory diagnosis. Ital. J. Pediatr. 2014, 40, 104. [Google Scholar] [CrossRef] [PubMed]
- Edin, A.; Eilers, H.; Allard, A. Evaluation of the Biofire Filmarray Pneumonia panel plus for lower respiratory tract infections. Infect. Dis. 2020, 52, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ray, S.; Vorselaars, B.; Kitson, J.; Mamalakis, M.; Weeks, S.; Baker, M.; Mackenzie, L.S. Use of Machine Learning and Artificial Intelligence to predict SARS-CoV-2 infection from Full Blood Counts in a population. Int. Immunopharmacol. 2020, 86, 106705. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.; Tang, K.; Cheng, M.; Liu, T.; Huang, Y.; Chen, C.; Yu, H. Use of saliva sample to detect C-reactive protein in children with pneumonia. Pediatr. Pulmonol. 2020, 55, 2457–2462. [Google Scholar] [CrossRef] [PubMed]
- Omran, A.; Ali, M.; Saleh, M.H.; Zekry, O. Salivary C-reactive protein and mean platelet volume in diagnosis of late-onset neonatal pneumonia. Clin. Respir. J. 2018, 12, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Patrucco, F.; Gavelli, F.; Ravanini, P.; Daverio, M.; Statti, G.; Castello, L.M.; Andreoni, S.; Balbo, P.E. Use of an innovative and non-invasive device for virologic sampling of cough aerosols in patients with community and hospital acquired pneumonia: A pilot study. J. Breath Res. 2019, 13, 021001. [Google Scholar] [CrossRef] [PubMed]
- Minnaard, M.C.; van de Pol, A.C.; de Groot, J.A.H.; De Wit, N.J.; Hopstaken, R.M.; van Delft, S.; Goossens, H.; Ieven, M.; Lammens, C.; Little, P.; et al. The added diagnostic value of five different C-reactive protein point-of-care test devices in detecting pneumonia in primary care: A nested case-control study. Scand. J. Clin. Lab. Investig. 2015, 75, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Kosasih, K.; Abeyratne, U.R.; Swarnkar, V.; Triasih, R. Wavelet Augmented Cough Analysis for Rapid Childhood Pneumonia Diagnosis. IEEE Trans. Biomed. Eng. 2015, 62, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yuan, X.; Pei, Z.; Li, M.; Li, J. Triple-Classification of Respiratory Sounds Using Optimized S-Transform and Deep Residual Networks. IEEE Access 2019, 7, 32845–32852. [Google Scholar] [CrossRef]
- Porter, P.; Brisbane, J.; Abeyratne, U.; Bear, N.; Wood, J.; Peltonen, V.; Della, P.; Smith, C.; Claxton, S. Diagnosing community-acquired pneumonia via a smartphone-based algorithm: A prospective cohort study in primary and acute-care consultations. Br. J. Gen. Pract. 2020, 71, e258–e264. [Google Scholar] [CrossRef] [PubMed]
- McCollum, E.D.; Park, D.E.; Watson, N.L.; Fancourt, N.S.S.; Focht, C.; Baggett, H.C.; Brooks, W.A.; Howie, S.R.C.; Kotloff, K.L.; Levine, O.S.; et al. Digital auscultation in PERCH: Associations with chest radiography and pneumonia mortality in children. Pediatr. Pulmonol. 2020, 55, 3197–3208. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Ruiz, J.; Bao, C.; Roy, S. Tabla: A Proof-of-Concept Auscultatory Percussion Device for Low-Cost Pneumonia Detection. Sensors 2018, 18, 2689. [Google Scholar] [CrossRef]
- Imran, A.; Posokhova, I.; Qureshi, H.N.; Masood, U.; Riaz, M.S.; Ali, K.; John, C.N.; Hussain, I.; Nabeel, M. AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. Inform. Med. Unlocked 2020, 20, 100378. [Google Scholar] [CrossRef]
- Tripathy, R.K.; Dash, S.; Rath, A.; Panda, G.; Pachori, R.B. Automated Detection of Pulmonary Diseases from Lung Sound Signals Using Fixed-Boundary-Based Empirical Wavelet Transform. IEEE Sens. Lett. 2022, 6, 7001504. [Google Scholar] [CrossRef]
- Fraiwan, M.; Fraiwan, L.; Khassawneh, B.; Ibnian, A. A dataset of lung sounds recorded from the chest wall using an electronic stethoscope. Data Brief 2021, 35, 106913. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Li, G.; Wu, D.; Lian, W.; Li, C.; Tian, J.; Ma, X.; Chen, H.; Xu, W.; Wei, J.; et al. 2019 novel coronavirus-infected pneumonia on CT: A feasibility study of few-shot learning for computerized diagnosis of emergency diseases. IEEE Access 2020, 8, 194158–194165. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, X.; Li, C.; Xu, Z.; Ruan, J.; Zhu, H.; Meng, T.; Li, K.; Huang, N.; Zhang, S. A Noise-Robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions from CT Images. IEEE Trans. Med. Imaging 2020, 39, 2653–2663. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Q.; Dou, Q. Contrastive Cross-Site Learning with Redesigned Net for COVID-19 CT Classification. IEEE J. Biomed. Health Inf. 2020, 24, 2806–2813. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, D.; Li, Z.; Zhang, X.; Liu, C. Deep regression via multi-channel multi-modal learning for pneumonia screening. IEEE Access 2020, 8, 78530–78541. [Google Scholar] [CrossRef]
- Kang, H.; Xia, L.; Yan, F.; Wan, Z.; Shi, F.; Yuan, H.; Jiang, H.; Wu, D.; Sui, H.; Zhang, C.; et al. Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent Multi-View Representation Learning. IEEE Trans. Med Imaging 2020, 39, 2606–2614. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Huo, J.; Xia, L.; Shan, F.; Liu, J.; Mo, Z.; Yan, F.; Ding, Z.; Yang, Q.; Song, B.; et al. Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community Acquired Pneumonia. IEEE Trans. Med. Imaging 2020, 39, 2595–2605. [Google Scholar] [CrossRef]
- Fan, D.-P.; Zhou, T.; Ji, G.-P.; Zhou, Y.; Chen, G.; Fu, H.; Shen, J.; Shao, L. Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images. IEEE Trans. Med. Imaging 2020, 39, 2626–2637. [Google Scholar] [CrossRef]
- Qian, X.; Fu, H.; Shi, W.; Chen, T.; Fu, Y.; Shan, F.; Xue, X. M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia Screening from CT Imaging. IEEE J. Biomed. Health Inf. 2020, 24, 3539–3550. Available online: http://arxiv.org/abs/2010.03201 (accessed on 6 June 2021). [CrossRef]
- Pei, H.Y.; Yang, D.; Liu, G.R.; Lu, T. MPS-net: Multi-point supervised network for ct image segmentation of COVID-19. IEEE Access 2021, 9, 47144–47153. [Google Scholar] [CrossRef]
- Wang, J.; Bao, Y.; Wen, Y.; Lu, H.; Luo, H.; Xiang, Y.; Li, X.; Liu, C.; Qian, D. Prior-Attention Residual Learning for More Discriminative COVID-19 Screening in CT Images. IEEE Trans. Med. Imaging 2020, 39, 2572–2583. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Gong, K.; Arru, C.D.; Homayounieh, F.; Bizzo, B.; Buch, V.; Ren, H.; Kim, K.; Neumark, N.; Xu, P.; et al. Severity and Consolidation Quantification of COVID-19 from CT Images Using Deep Learning Based on Hybrid Weak Labels. IEEE J. Biomed. Health Inf. 2020, 24, 3529–3538. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology 2020, 296, E65–E71. [Google Scholar] [CrossRef]
- Wu, X.; Hui, H.; Niu, M.; Li, L.; Wang, L.; He, B.; Yang, X.; Li, L.; Li, H.; Tian, J.; et al. Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study. Eur. J. Radiol. 2020, 128, 109041. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Kang, S.; Tian, R.; Zhang, X.; Wang, Y. Imaging manifestations and diagnostic value of chest CT of coronavirus disease 2019 (COVID-19) in the Xiaogan area. Clin. Radiol. 2020, 75, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Oulefki, A.; Agaian, S.; Trongtirakul, T.; Laouar, A.K. Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images. Pattern Recognit. 2021, 114, 107747. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, M.; Kavasidis, I.; Spampinato, C.; Schinina, V.; Palazzo, S.; Salanitri, F.P.; Bellitto, G.; Rundo, F.; Aldinucci, M.; Cristofaro, M.; et al. An Explainable AI System for Automated COVID-19 Assessment and Lesion Categorization from CT-scans. Artif. Intell. Med. 2021, 118, 102114. [Google Scholar] [CrossRef] [PubMed]
- Polsinelli, M.; Cinque, L.; Placidi, G. A light CNN for detecting COVID-19 from CT scans of the chest. Pattern Recognit. Lett. 2020, 140, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, V.; Singh, S.K.; Khamparia, A.; Gupta, D.; Tiwari, P.; Moreira, C.; Damaševičius, R.; de Albuquerque, V.H.C. A novel transfer learning based approach for pneumonia detection in chest X-ray images. Appl. Sci. 2020, 10, 559. [Google Scholar] [CrossRef]
- Arias-Londono, J.D.; Gomez-Garcia, J.A.; Moro-Velazquez, L.; Godino-Llorente, J.I. Artificial Intelligence applied to chest X-ray images for the automatic detection of COVID-19. A thoughtful evaluation approach. IEEE Access 2020, 8, 226811–226827. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Bin Mahbub, Z.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al Emadi, N.; et al. Can AI help in screening Viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [Google Scholar] [CrossRef]
- Yu, X.; Wang, S.H.; Zhang, Y.D. CGNet: A graph-knowledge embedded convolutional neural network for detection of pneumonia. Inf. Process. Manag. 2021, 58, 102411. [Google Scholar] [CrossRef] [PubMed]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-rays with Deep Learning. November 2017. Available online: http://arxiv.org/abs/1711.05225 (accessed on 7 June 2021).
- Chhikara, P.; Singh, P.; Gupta, P.; Bhatia, T. Deep convolutional neural network with transfer learning for detecting pneumonia on chest X-rays. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 155–168. [Google Scholar] [CrossRef]
- Ahsan, M.; Ahad, T.; Soma, F.A.; Paul, S.; Chowdhury, A.; Luna, S.A.; Yazdan, M.M.S.; Rahman, A.; Siddique, Z.; Huebner, P. Detecting SARS-CoV-2 from chest X-ray using artificial intelligence. IEEE Access 2021, 9, 35501–35513. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.K.; Singh, A. Diagnosis of COVID-19 from chest X-ray images using wavelets-based depthwise convolution network. Big Data Min. Anal. 2021, 4, 84–93. [Google Scholar] [CrossRef]
- Ahishali, M.; Degerli, A.; Yamac, M.; Kiranyaz, S.; Chowdhury, M.E.H.; Hameed, K.; Hamid, T.; Mazhar, R.; Gabbouj, M. Advance Warning Methodologies for COVID-19 using Chest X-ray Images. IEEE Access 2020, 9, 41052–41065. [Google Scholar] [CrossRef] [PubMed]
- Saul, C.J.; Urey, D.Y.; Taktakoglu, C.D. Early Diagnosis of Pneumonia with Deep Learning. arXiv 2019, arXiv:1904.00937. [Google Scholar]
- Yao, S.; Chen, Y.; Tian, X.; Jiang, R. GeminiNet: Combine Fully Convolution Network with Structure of Receptive Fields for Object Detection. IEEE Access 2020, 8, 60305–60313. [Google Scholar] [CrossRef]
- Rozenberg, E.; Freedman, D.; Bronstein, A.A. Learning to Localize Objects Using Limited Annotation, with Applications to Thoracic Diseases. IEEE Access 2021, 9, 67620–67633. [Google Scholar] [CrossRef]
- Saraiva, A.; Santos, D.; Costa, N.; Sousa, J.; Ferreira, N.; Valente, A.; Soares, S. Models of Learning to Classify X-ray Images for the Detection of Pneumonia using Neural Networks. In Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019), Prague, Czech Republic, 22–24 February 2019. [Google Scholar] [CrossRef]
- Wu, J.X.; Chen, P.Y.; Li, C.M.; Kuo, Y.C.; Pai, N.S.; Lin, C.H. Multilayer Fractional-Order Machine Vision Classifier for Rapid Typical Lung Diseases Screening on Digital Chest X-ray Images. IEEE Access 2020, 8, 105886–105902. [Google Scholar] [CrossRef]
- Babukarthik, R.G.; Adiga, V.A.K.; Sambasivam, G.; Chandramohan, D.; Amudhavel, A.J. Prediction of COVID-19 using genetic deep learning convolutional neural network (GDCNN). IEEE Access 2020, 8, 177647–177666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, Y.; Pang, G.; Liao, Z.; Verjans, J.; Li, W.; Sun, Z.; He, J.; Li, Y.; Shen, C.; et al. Viral Pneumonia Screening on Chest X-rays Using Confidence-Aware Anomaly Detection. IEEE Trans. Med. Imaging 2021, 40, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Zheng, L. A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Comput. Methods Programs Biomed. 2020, 187, 104964. [Google Scholar] [CrossRef] [PubMed]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9. [Google Scholar] [CrossRef] [PubMed]
- Stephen, O.; Sain, M.; Maduh, U.J.; Jeong, D.U. An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare. J. Healthc. Eng. 2019, 2019, 4180949. [Google Scholar] [CrossRef]
- Xu, Y.; Lam, H.K.; Jia, G. MANet: A two-stage deep learning method for classification of COVID-19 from Chest X-ray images. Neurocomputing 2021, 443, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.P.; Morrison, P.; Dao, L.; Roth, K.; Duong, T.Q.; Ghassemi, M. COVID-19 Image Data Collection: Prospective Predictions Are the Future. J. Mach. Learn. Biomed. Imaging 2020, 2020, 2–3. [Google Scholar] [CrossRef]
- Ho, M.C.; Ker, C.R.; Hsu, J.H.; Wu, J.R.; Dai, Z.K.; Chen, I.C. Usefulness of lung ultrasound in the diagnosis of community-acquired pneumonia in children. Pediatr. Neonatol. 2015, 56, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Menapace, W.; Oei, S.; Luijten, B.; Fini, E.; Saltori, C.; Huijben, I.; Chennakeshava, N.; Mento, F.; Sentelli, A.; et al. Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound. IEEE Trans. Med. Imaging 2020, 39, 2676–2687. [Google Scholar] [CrossRef] [PubMed]
- Ellington, L.E.; Gilman, R.H.; Chavez, M.A.; Pervaiz, F.; Marin-Concha, J.; Compen-Chang, P.; Riedel, S.; Rodriguez, S.J.; Gaydos, C.; Hardick, J.; et al. Lung ultrasound as a diagnostic tool for radiographically-confirmed pneumonia in low resource settings. Respir. Med. 2017, 128, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, S.; Franc, M.; Ebstein, E.; Demaria, L.; Lheure, C.; Debray, M.; Khalil, A.; Crestani, B.; Borie, R.; Dieudé, P. Lung ultrasonography in patients with COVID-19: Comparison with CT. Clin. Radiol. 2020, 75, 877.e1–877.e6. [Google Scholar] [CrossRef]
- Reissig, A.; Copetti, R.; Mathis, G.; Mempel, C.; Schuler, A.; Zechner, P.; Aliberti, S.; Neumann, R.; Kroegel, C.; Hoyer, H. Lung ultrasound in the diagnosis and follow-up of community-acquired pneumonia: A prospective, multicenter, diagnostic accuracy study. Chest 2012, 142, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Lovrenski, J.; Petrović, S.; Balj-Barbir, S.; Jokić, R.; Vilotijević-Dautović, G. Stethoscope vs. ultrasound probe–which is more reliable in children with suspected pneumonia? Acta Med. Acad. 2016, 45, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Biagi, C.; Pierantoni, L.; Baldazzi, M.; Greco, L.; Dormi, A.; Dondi, A.; Faldella, G.; Lanari, M. Lung ultrasound for the diagnosis of pneumonia in children with acute bronchiolitis. BMC Pulm. Med. 2018, 18, 191. [Google Scholar] [CrossRef] [PubMed]
- Ambroggio, L.; Sucharew, H.; Rattan, M.S.; O’Hara, S.M.; Babcock, D.S.; Clohessy, C.; Steinhoff, M.C.; Macaluso, M.; Shah, S.S.; Coley, B.D. Lung Ultrasonography: A Viable Alternative to Chest Radiography in Children with Suspected Pneumonia? J. Pediatr. 2016, 176, 93–98.e7. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Lian, X.; Zhu, Z.; Wang, Z.; Huang, F.; Zhang, Y.; Zhao, Y.; He, S.; Wang, X.; Shen, H.; et al. Use of Lung Ultrasound to Differentiate Coronavirus Disease 2019 (COVID-19) Pneumonia from Community-Acquired Pneumonia. Ultrasound Med. Biol. 2020, 46, 2651–2658. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, G.; Hossain, M.S. COVID-19 and Non-COVID-19 Classification using Multi-layers Fusion From Lung Ultrasound Images. Inf. Fusion 2021, 72, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.P.; Tunik, M.G.; Tsung, J.W. Prospective evaluation of point-of-care ultrasonography for the diagnosis of pneumonia in children and young adults. JAMA Pediatr. 2013, 167, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Karlen, W.; Raman, S.; Ansermino, J.M.; Dumont, G.A. Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans. Biomed. Eng. 2013, 60, 1946–1953. [Google Scholar] [CrossRef] [PubMed]
- Lyu, M.J.; Yuan, S.M. Cloud-Based Smart Dog Music Therapy and Pneumonia Detection System for Reducing the Difficulty of Caring for Patients with Dementia. IEEE Access 2020, 8, 20977–20990. [Google Scholar] [CrossRef]
- Mala, K.; Kumar, B.M.; Vignesh, R.; Kumar, K.M. A wearable diagnostic device to combat children’s pneumonia. In Proceedings of the GHTC 2016–IEEE Global Humanitarian Technology Conference: Technology for the Benefit of Humanity, Conference Proceedings, Seattle, DC, USA, 13–16 October 2016. [Google Scholar] [CrossRef]
- El Salti, T.; Sykes, E.R.; Zajac, W.; Abdullah, S.; Khoja, S. NewPneu: A Novel Cost Effective mHealth System for Diagnosing Childhood Pneumonia in Low-Resource Settings. In Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference, IEMCON 2019, Vancouver, BC, USA, 17–19 October 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 5–12. [Google Scholar] [CrossRef]
- Chiu, S.-W.; Wang, J.-H.; Chang, K.-H.; Chang, T.-H.; Wang, C.-M.; Chang, C.-L.; Tang, C.-T.; Chen, C.-F.; Shih, C.-H.; Kuo, H.-W.; et al. A fully integrated nose-on-a-chip for rapid diagnosis of ventilator-associated pneumonia. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 765–778. [Google Scholar] [CrossRef] [PubMed]
- Doulou, S.; Leventogiannis, K.; Tsilika, M.; Rodencal, M.; Katrini, K.; Antonakos, N.; Kyprianou, M.; Karofylakis, E.; Karageorgos, A.; Koufargyris, P.; et al. A novel optical biosensor for the early diagnosis of sepsis and severe COVID-19: The PROUD study. BMC Infect. Dis. 2020, 20, 860. [Google Scholar] [CrossRef] [PubMed]
Degree of Illness | Age Group | ||
---|---|---|---|
Infants | Older Children | Adults | |
Mild/Moderate | 1 Temp: <38.5 °C 2 RR: <50 bpm Mild recession Normal feeding | 1 Temp: <38.5 °C 2 RR: <50 bpm Mild dyspnea No vomiting | 1 Temp > 39 °C 2 RR > 30 bpm Dyspnea Mild cough |
Severe | 1 Temp: >38.5 °C 2 RR: >70 bpm Mild-to-severe recession Respiratory distress Tachycardia Intermittent apnea Decreased feeding Capillary refill time > 2 s | 1 Temp: >38.5 °C 2 RR: >50 bpm Mild-to-severe recession Respiratory distress Tachycardia Intermittent apnea Decreased feeding | 1 Temp > 39 °C Respiratory distress Cough Low systolic blood pressure |
Very severe | Cough or difficulty in breathing Oxygen saturation <90% or central cyanosis Severe respiratory distress (e.g., grunting, very severe chest indrawing) Signs of pneumonia with a general danger sign (inability to breastfeed or drink, lethargy or reduced level of consciousness, convulsions) | Temp > 40 °C RR > 30 bpm SpO2 < 92 Arterial pH < 7.5 Multiple organ dysfunctions Altered mental state Pleuritic chest pain Adventitious breath sounds |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanwal, K.; Asif, M.; Khalid, S.G.; Liu, H.; Qurashi, A.G.; Abdullah, S. Current Diagnostic Techniques for Pneumonia: A Scoping Review. Sensors 2024, 24, 4291. https://doi.org/10.3390/s24134291
Kanwal K, Asif M, Khalid SG, Liu H, Qurashi AG, Abdullah S. Current Diagnostic Techniques for Pneumonia: A Scoping Review. Sensors. 2024; 24(13):4291. https://doi.org/10.3390/s24134291
Chicago/Turabian StyleKanwal, Kehkashan, Muhammad Asif, Syed Ghufran Khalid, Haipeng Liu, Aisha Ghazal Qurashi, and Saad Abdullah. 2024. "Current Diagnostic Techniques for Pneumonia: A Scoping Review" Sensors 24, no. 13: 4291. https://doi.org/10.3390/s24134291
APA StyleKanwal, K., Asif, M., Khalid, S. G., Liu, H., Qurashi, A. G., & Abdullah, S. (2024). Current Diagnostic Techniques for Pneumonia: A Scoping Review. Sensors, 24(13), 4291. https://doi.org/10.3390/s24134291