Differential Responses to Low- and High-Frequency Subthalamic Nucleus Deep Brain Stimulation on Sensor-Measured Components of Bradykinesia in Parkinson’s Disease
Abstract
:1. Introduction
2. Methods
2.1. Study
2.2. Subjects
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. Demographics
3.2. Motor Speed
3.3. Motor Amplitude
3.4. Motor Rhythm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bologna, M.; Espay, A.J.; Fasano, A.; Paparella, G.; Hallett, M.; Berardelli, A. Redefining Bradykinesia. Mov. Disord. 2023, 38, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Timmermann, L.; Braun, M.; Groiss, S.; Wojtecki, L.; Ostrowski, S.; Krause, H.; Pollok, B.; Südmeyer, M.; Ploner, M.; Gross, J.; et al. Differential effects of levodopa and subthalamic nucleus deep brain stimulation on bradykinesia in Parkinson’s disease. Mov. Disord. 2008, 23, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Bologna, M.; Paparella, G.; Fasano, A.; Hallett, M.; Berardelli, A. Evolving concepts on bradykinesia. Brain 2020, 143, 727–750. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Wasaka, T.; Shamim, E.A.; Auh, S.; Ueki, Y.; Lopez, G.J.; Kida, T.; Jin, S.; Dang, N.; Hallett, M. Characteristics of the sequence effect in Parkinson’s disease. Mov. Disord. 2010, 25, 2148–2155. [Google Scholar] [CrossRef] [PubMed]
- Momin, S.; Mahlknecht, P.; Georgiev, D.; Foltynie, T.; Zrinzo, L.; Hariz, M.; Zacharia, A.; Limousin, P. Impact of Subthalamic Deep Brain Stimulation Frequency on Upper Limb Motor Function in Parkinson’s Disease. J. Park. Dis. 2018, 8, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, Z.; Koop, M.M.; Prieto, T.E.; Shreve, L.A.; Velisar, A.; Quinn, E.J.; Trager, M.H.; Brontë-Stewart, H. Sixty-hertz stimulation improves bradykinesia and amplifies subthalamic low-frequency oscillations. Mov. Disord. 2017, 32, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Dunnewold, R.J.W.; Jacobi, C.E.; Van Hilten, J.J. Quantitative assessment of bradykinesia in patients with parkinson’s disease. J. Neurosci. Methods 1997, 74, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Heldman, D.A.; Espay, A.J.; LeWitt, P.A.; Giuffrida, J.P. Clinician versus machine: Reliability and responsiveness of motor endpoints in Parkinson’s disease. Park. Relat. Disord. 2014, 20, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Mera, T.O.; Burack, M.A.; Giuffrida, J.P. Quantitative assessment of levodopa-induced dyskinesia using automated motion sensing technology. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: New York, NY, USA, 2012; pp. 154–157. [Google Scholar]
- Taylor Tavares, A.L.; Jefferis, G.S.X.E.; Koop, M.; Hill, B.C.; Hastie, T.; Heit, G.; Bronte-Stewart, H.M. Quantitative measurements of alternating finger tapping in Parkinson’s disease correlate with UPDRS motor disability and reveal the improvement in fine motor control from medication and deep brain stimulation. Mov. Disord. 2005, 20, 1286–1298. [Google Scholar] [CrossRef]
- Habets, J.G.V.; Spooner, R.K.; Mathiopoulou, V.; Feldmann, L.K.; Busch, J.L.; Roediger, J.; Bahners, B.H.; Schnitzler, A.; Florin, E.; Kühn, A.A. A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data. Sensors 2023, 23, 5238. [Google Scholar] [CrossRef]
- Ramdhani, R.A.; Watts, J.; Kline, M.; Fitzpatrick, T.; Niethammer, M.; Khojandi, A. Differential spatiotemporal gait effects with frequency and dopaminergic modulation in STN-DBS. Front. Aging Neurosci. 2023, 15, 1206533. [Google Scholar] [CrossRef]
- Ramdhani, R.A.; Patel, A.; Swope, D.; Kopell, B.H. Early Use of 60 Hz Frequency Subthalamic Stimulation in Parkinson’s Disease: A Case Series and Review. Neuromodul. Technol. Neural Interface 2015, 18, 664–669. [Google Scholar] [CrossRef]
- Dembek, T.A.; Roediger, J.; Horn, A.; Reker, P.; Oehrn, C.; Dafsari, H.S.; Li, N.; Kühn, A.A.; Fink, G.R.; Visser-Vandewalle, V.; et al. Probabilistic sweet spots predict motor outcome for deep brain stimulation in Parkinson disease. Ann. Neurol. 2019, 86, 527–538. [Google Scholar] [CrossRef]
- Boutet, A.; Germann, J.; Gwun, D.; Loh, A.; Elias, G.J.B.; Neudorfer, C.; Paff, M.; Horn, A.; A Kuhn, A.; Munhoz, R.P.; et al. Sign-specific stimulation ‘hot’ and ‘cold’ spots in Parkinson’s disease validated with machine learning. Brain Commun. 2021, 3, fcab027. [Google Scholar] [CrossRef]
- Schulder, M.; Mishra, A.; Mammis, A.; Horn, A.; Boutet, A.; Blomstedt, P.; Chabardes, S.; Flouty, O.; Lozano, A.M.; Neimat, J.S.; et al. Advances in Technical Aspects of Deep Brain Stimulation Surgery. Stereotact. Funct. Neurosurg. 2023, 101, 112–134. [Google Scholar] [CrossRef]
- Mishra, A.; Ramdhani, R.A. Directional Deep Brain Stimulation in the Treatment of Parkinson’s Disease. Neurology 2022, 18, 64. [Google Scholar] [CrossRef]
- Hamani, C. The subthalamic nucleus in the context of movement disorders. Brain 2004, 127, 4–20. [Google Scholar] [CrossRef]
- Hamani, C.; Florence, G.; Heinsen, H.; Plantinga, B.R.; Temel, Y.; Uludag, K.; Alho, E.; Teixeira, M.J.; Amaro, E.; Fonoff, E.T. Subthalamic Nucleus Deep Brain Stimulation: Basic Concepts and Novel Perspectives. eNeuro 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Parent, M.; Parent, A. The pallidofugal motor fiber system in primates. Park. Relat. Disord. 2004, 10, 203–211. [Google Scholar] [CrossRef]
- Neumann, W.-J.; Degen, K.; Schneider, G.-H.; Brücke, C.; Huebl, J.; Brown, P.; Kühn, A.A. Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson’s disease. Mov. Disord. 2016, 31, 1748–1751. [Google Scholar] [CrossRef]
- Lofredi, R.; Tan, H.; Neumann, W.-J.; Yeh, C.-H.; Schneider, G.-H.; Kühn, A.A.; Brown, P. Beta bursts during continuous movements accompany the velocity decrement in Parkinson’s disease patients. Neurobiol. Dis. 2019, 127, 462–471. [Google Scholar] [CrossRef]
- Wu, T.; Hallett, M. The cerebellum in Parkinson’s disease. Brain 2013, 136, 696–709. [Google Scholar] [CrossRef]
- Wiest, C.; Tinkhauser, G.; Pogosyan, A.; He, S.; Baig, F.; Morgante, F.; Mostofi, A.; Pereira, E.A.; Tan, H.; Brown, P.; et al. Subthalamic deep brain stimulation induces finely-tuned gamma oscillations in the absence of levodopa. Neurobiol. Dis. 2021, 152, 105287. [Google Scholar] [CrossRef]
- Wiest, C.; Torrecillos, F.; Tinkhauser, G.; Pogosyan, A.; Morgante, F.; Pereira, E.A.; Tan, H. Finely-tuned gamma oscillations: Spectral characteristics and links to dyskinesia. Exp. Neurol. 2022, 351, 113999. [Google Scholar] [CrossRef]
- Cheyne, D.; Bells, S.; Ferrari, P.; Gaetz, W.; Bostan, A.C. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. NeuroImage 2008, 42, 332–342. [Google Scholar] [CrossRef]
- Duchet, B.; Sermon, J.J.; Weerasinghe, G.; Denison, T.; Bogacz, R. How to entrain a selected neuronal rhythm but not others: Open-loop dithered brain stimulation for selective entrainment. J. Neural Eng. 2023, 20, 026003. [Google Scholar] [CrossRef]
- Mathiopoulou, V.; Habets, J.; Feldmann, L.K.; Busch, J.L.; Roediger, J.; Behnke, J.K.; Schneider, G.H.; Faust, K.; Kühn, A.A. DBS-induced gamma entrainment as a new biomarker for motor improvement with neuromodulation. medRxiv 2024. [Google Scholar] [CrossRef]
- Mishra, A.; Unadkat, P.; McBriar, J.D.; Schulder, M.; Ramdhani, R.A. An Institutional Experience of Directional Deep Brain Stimulation and a Review of the Literature. Neuromodul. Technol. Neural Interface 2024, 27, 544–550. [Google Scholar] [CrossRef]
Speed | Amplitude | Rhythm | ||||
---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
Contact Number | 0.272 | 0.846 | 0.038 | 0.990 | 0.750 | 0.523 |
Medication State | 25.666 | <0.001 | 9.050 | 0.003 | 12.527 | <0.001 |
Stimulation Amplitude | 1.451 | 0.229 | 6.323 | 0.013 | 0.128 | 0.721 |
Stimulation Frequency | 6.636 | 0.011 | 10.696 | 0.001 | 4.364 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, A.; Bajaj, V.; Fitzpatrick, T.; Watts, J.; Khojandi, A.; Ramdhani, R.A. Differential Responses to Low- and High-Frequency Subthalamic Nucleus Deep Brain Stimulation on Sensor-Measured Components of Bradykinesia in Parkinson’s Disease. Sensors 2024, 24, 4296. https://doi.org/10.3390/s24134296
Mishra A, Bajaj V, Fitzpatrick T, Watts J, Khojandi A, Ramdhani RA. Differential Responses to Low- and High-Frequency Subthalamic Nucleus Deep Brain Stimulation on Sensor-Measured Components of Bradykinesia in Parkinson’s Disease. Sensors. 2024; 24(13):4296. https://doi.org/10.3390/s24134296
Chicago/Turabian StyleMishra, Akash, Vikram Bajaj, Toni Fitzpatrick, Jeremy Watts, Anahita Khojandi, and Ritesh A. Ramdhani. 2024. "Differential Responses to Low- and High-Frequency Subthalamic Nucleus Deep Brain Stimulation on Sensor-Measured Components of Bradykinesia in Parkinson’s Disease" Sensors 24, no. 13: 4296. https://doi.org/10.3390/s24134296
APA StyleMishra, A., Bajaj, V., Fitzpatrick, T., Watts, J., Khojandi, A., & Ramdhani, R. A. (2024). Differential Responses to Low- and High-Frequency Subthalamic Nucleus Deep Brain Stimulation on Sensor-Measured Components of Bradykinesia in Parkinson’s Disease. Sensors, 24(13), 4296. https://doi.org/10.3390/s24134296