Advancing DIEP Flap Monitoring with Optical Imaging Techniques: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
Literature Review and Selection Process
3. Results
3.1. Near-Infrared Spectroscopy (NIRS)
3.2. Indocyanine Green Angiography (ICG-A)
3.3. Laser Speckle Contrast Imaging (LSCI)
3.4. Hyperspectral Imaging (HSI)
3.5. Thermographic Imaging and Dynamic Infrared Thermography (DIRT)
3.6. Short-Wave Infrared (SWIR) Imaging
4. Future Perspective
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chae, M.P.; Rozen, W.M.; Whitaker, I.S.; Chubb, D.; Grinsell, D.; Ashton, M.W.; Hunter-Smith, D.J.; Lineaweaver, W.C. Current evidence for postoperative monitoring of microvascular free flaps: A systematic review. Ann. Plast. Surg. 2015, 74, 621–632. [Google Scholar] [CrossRef]
- Lee, S.; Namgoong, J.-M.; Kim, Y.; Cha, J.; Kim, J.K. Multimodal imaging of laser speckle contrast imaging combined with mosaic filter-based hyperspectral imaging for precise surgical guidance. IEEE Trans. Biomed. Eng. 2021, 69, 443–452. [Google Scholar] [CrossRef]
- Mangraviti, A.; Volpin, F.; Cha, J.; Cunningham, S.I.; Raje, K.; Brooke, M.J.; Brem, H.; Olivi, A.; Huang, J.; Tyler, B.M. Intraoperative laser speckle contrast imaging for real-time visualization of cerebral blood flow in cerebrovascular surgery: Results from pre-clinical studies. Sci. Rep. 2020, 10, 7614. [Google Scholar] [CrossRef]
- Ferrari, M.; Mottola, L.; Quaresima, V. Principles, techniques, and limitations of near infrared spectroscopy. Can. J. Appl. Physiol. 2004, 29, 463–487. [Google Scholar] [CrossRef]
- Gibbs, S.L. Near infrared fluorescence for image-guided surgery. Quant. Imaging Med. Surg. 2012, 2, 177–187. [Google Scholar]
- Boushel, R.; Langberg, H.; Olesen, J.; Gonzales-Alonzo, J.; Bulow, J.; Kjaer, M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand. J. Med. Sci. Sports 2001, 11, 213–222. [Google Scholar] [CrossRef]
- Knoedler, S.; Hoch, C.C.; Huelsboemer, L.; Knoedler, L.; Stogner, V.A.; Pomahac, B.; Kauke-Navarro, M.; Colen, D. Postoperative free flap monitoring in reconstructive surgery-man or machine? Front. Surg. 2023, 10, 1130566. [Google Scholar] [CrossRef]
- Kagaya, Y.; Miyamoto, S. A systematic review of near-infrared spectroscopy in flap monitoring: Current basic and clinical evidence and prospects. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 246–257. [Google Scholar] [CrossRef]
- Newton, E.; Butskiy, O.; Shadgan, B.; Prisman, E.; Anderson, D.W. Outcomes of free flap reconstructions with near-infrared spectroscopy (NIRS) monitoring: A systematic review. Microsurgery 2020, 40, 268–275. [Google Scholar] [CrossRef]
- Bian, H.Z.; Pek, C.H.; Hwee, J. Current evidence on the use of near-infrared spectroscopy for postoperative free flap monitoring: A systematic review. Chin. J. Plast. Reconstr. Surg. 2022, 4, 194–202. [Google Scholar] [CrossRef]
- Berthelot, M.; Ashcroft, J.; Boshier, P.; Hunter, J.; Henry, F.P.; Lo, B.; Yang, G.Z.; Leff, D. Use of Near-infrared Spectroscopy and Implantable Doppler for Postoperative Monitoring of Free Tissue Transfer for Breast Reconstruction: A Systematic Review and Meta-analysis. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2437. [Google Scholar] [CrossRef]
- Rolfe, P. In Vivo Near-Infrared Spectroscopy. Annu. Rev. Biomed. Eng. 2000, 2, 715–754. [Google Scholar] [CrossRef]
- Patel, R.; Dawidziuk, A.; Darzi, A.; Singh, H.; Leff, D.R. Systematic review of combined functional near-infrared spectroscopy and transcranial direct-current stimulation studies. Neurophotonics 2020, 7, 020901. [Google Scholar] [CrossRef]
- Strangman, G.; Boas, D.A.; Sutton, J.P. Non-invasive neuroimaging using near-infrared light. Biol. Psychiatry 2002, 52, 679–693. [Google Scholar] [CrossRef]
- Schaafsma, B.E.; Mieog, J.S.; Hutteman, M.; van der Vorst, J.R.; Kuppen, P.J.; Lowik, C.W.; Frangioni, J.V.; van de Velde, C.J.; Vahrmeijer, A.L. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J. Surg. Oncol. 2011, 104, 323–332. [Google Scholar] [CrossRef]
- Refaat, A.; Yap, M.L.; Pietersz, G.; Walsh, A.P.G.; Zeller, J.; Del Rosal, B.; Wang, X.; Peter, K. In vivo fluorescence imaging: Success in preclinical imaging paves the way for clinical applications. J. Nanobiotechnol. 2022, 20, 450. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Mercer, J.B.; de Weerd, L. In Vivo Perforasome Perfusion in Hemi-DIEP Flaps Evaluated with Indocyanine-green Fluorescence Angiography and Infrared Thermography. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3560. [Google Scholar] [CrossRef]
- Yoshimatsu, H.; Karakawa, R.; Scaglioni, M.F.; Fuse, Y.; Tanakura, K.; Yano, T. Application of intraoperative indocyanine green angiography for detecting flap congestion in the use of free deep inferior epigastric perforator flaps for breast reconstruction. Microsurgery 2021, 41, 522–526. [Google Scholar] [CrossRef]
- Wang, Z.; Jiao, L.; Chen, S.; Li, Z.; Xiao, Y.; Du, F.; Huang, J.; Long, X. Flap perfusion assessment with indocyanine green angiography in deep inferior epigastric perforator flap breast reconstruction: A systematic review and meta-analysis. Microsurgery 2023, 43, 627–638. [Google Scholar] [CrossRef]
- Muntean, M.; Ardelean, F.; Strilciuc, S.; Pestean, C.; Georgescu, A.; Muntean, V. Flap warming improves intraoperative indocyanine green angiography (ICGA) assessment of perfusion. An experimental study. J. Plast. Reconstr. Aesthetic Surg. 2019, 72, 1150–1156. [Google Scholar] [CrossRef]
- Lauritzen, E.; Bredgaard, R.; Bonde, C.; Jensen, L.T.; Damsgaard, T.E. Indocyanine green angiography in breast reconstruction: A narrative review. Ann. Breast Surg. 2022, 6. [Google Scholar] [CrossRef]
- Griffiths, M.; Chae, M.P.; Rozen, W.M. Indocyanine green-based fluorescent angiography in breast reconstruction. Gland Surg. 2016, 5, 133–149. [Google Scholar] [PubMed]
- Pruimboom, T.; van Kuijk, S.M.J.; Qiu, S.S.; van den Bos, J.; Wieringa, F.P.; van der Hulst, R.; Schols, R.M. Optimizing Indocyanine Green Fluorescence Angiography in Reconstructive Flap Surgery: A Systematic Review and Ex Vivo Experiments. Surg. Innov. 2020, 27, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Bigdeli, A.K.; Thomas, B.; Falkner, F.; Gazyakan, E.; Hirche, C.; Kneser, U. The impact of indocyanine-green fluorescence angiography on intraoperative decision-making and postoperative outcome in free flap surgery. J. Reconstr. Microsurg. 2020, 36, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Damsgaard, T.E.; Ronning, H. Indocyanine green guided mastectomy and immediate breast reconstruction. Gland Surg. 2019, 8, S287–S290. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, Z.; Nicoli, F.; D’Ambrosia, C.; Xi, W.; Lazzeri, D.; Feng, S.; Su, W.; Li, H.; Tremp, M. Application of indocyanine green in flap surgery: A systematic review. J. Reconstr. Microsurg. 2018, 34, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Briers, D.; Duncan, D.D.; Hirst, E.; Kirkpatrick, S.J.; Larsson, M.; Steenbergen, W.; Stromberg, T.; Thompson, O.B. Laser speckle contrast imaging: Theoretical and practical limitations. J. Biomed. Opt. 2013, 18, 066018. [Google Scholar] [CrossRef] [PubMed]
- Heeman, W.; Steenbergen, W.; van Dam, G.; Boerma, E.C. Clinical applications of laser speckle contrast imaging: A review. J. Biomed. Opt. 2019, 24, 080901. [Google Scholar] [CrossRef] [PubMed]
- Zotterman, J.; Opsomer, D.; Farnebo, S.; Blondeel, P.; Monstrey, S.; Tesselaar, E. Intraoperative Laser Speckle Contrast Imaging in DIEP Breast Reconstruction: A Prospective Case Series Study. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2529. [Google Scholar] [CrossRef]
- Zotterman, J.; Tesselaar, E.; Farnebo, S. The use of laser speckle contrast imaging to predict flap necrosis: An experimental study in a porcine flap model. J. Plast. Reconstr. Aesthet. Surg. 2019, 72, 771–777. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, J.; Zhi, Z.; Wen, X.; Luo, Q. Imaging dermal blood flow through the intact rat skin with an optical clearing method. J. Biomed. Opt. 2010, 15, 026008. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Xia, Q.; Yu, T.T.; Zhu, J.T.; Zhu, D. Transmissive-detected laser speckle contrast imaging for blood flow monitoring in thick tissue: From Monte Carlo simulation to experimental demonstration. Light Sci. Appl. 2021, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Iredahl, F.; Lofberg, A.; Sjoberg, F.; Farnebo, S.; Tesselaar, E. Non-Invasive Measurement of Skin Microvascular Response during Pharmacological and Physiological Provocations. PLoS ONE 2015, 10, e0133760. [Google Scholar] [CrossRef] [PubMed]
- Zötterman, J.; Bergkvist, M.; Iredahl, F.; Tesselaar, E.; Farnebo, S. Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging. J. Plast. Reconstr. Aesthetic Surg. 2016, 69, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Broch, A.; Mudge, S.; Kim, K.; Namgoong, J.M.; Oh, E.; Kim, P. Real-time, label-free, intraoperative visualization of peripheral nerves and micro-vasculatures using multimodal optical imaging techniques. Biomed. Opt. Express 2018, 9, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Hren, R.; Sersa, G.; Simoncic, U.; Milanic, M. Imaging perfusion changes in oncological clinical applications by hyperspectral imaging: A literature review. Radiol. Oncol. 2022, 56, 420–429. [Google Scholar] [CrossRef]
- Ahmed, S.; Anirvan, P.; Sharma, P.P.; Das, M.K. Hyperspectral imaging: Current and potential clinical applications. In Biomedical Imaging Instrumentation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 115–130. [Google Scholar]
- Kohler, L.H.; Kohler, H.; Kohler, S.; Langer, S.; Nuwayhid, R.; Gockel, I.; Spindler, N.; Osterhoff, G. Hyperspectral Imaging (HSI) as a new diagnostic tool in free flap monitoring for soft tissue reconstruction: A proof of concept study. BMC Surg. 2021, 21, 222. [Google Scholar] [CrossRef] [PubMed]
- Bunke, J.; Merdasa, A.; Stridh, M.; Rosenquist, P.; Berggren, J.; Hernandez-Palacios, J.E.; Dahlstrand, U.; Reistad, N.; Sheikh, R.; Malmsjö, M. Hyperspectral and laser speckle contrast imaging for monitoring the effect of epinephrine in local anesthetics in oculoplastic surgery. Ophthalmic Plast. Reconstr. Surg. 2022, 38, 462. [Google Scholar] [CrossRef]
- Kifle, N.; Teti, S.; Ning, B.; Donoho, D.A.; Katz, I.; Keating, R.; Cha, R.J. Pediatric Brain Tissue Segmentation Using a Snapshot Hyperspectral Imaging (sHSI) Camera and Machine Learning Classifier. Bioengineering 2023, 10, 1190. [Google Scholar] [CrossRef]
- Abay, T.Y.; Kyriacou, P.A. Reflectance photoplethysmography as noninvasive monitoring of tissue blood perfusion. IEEE Trans. Biomed. Eng. 2015, 62, 2187–2195. [Google Scholar] [CrossRef]
- Alander, J.T.; Kaartinen, I.; Laakso, A.; Pätilä, T.; Spillmann, T.; Tuchin, V.V.; Venermo, M.; Välisuo, P. A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging 2012, 2012, 940585. [Google Scholar] [CrossRef] [PubMed]
- Beech, A.; Moe, J. Trends in Microvascular Surgery. In Advancements and Innovations in OMFS, ENT, and Facial Plastic Surgery; Springer: Berlin/Heidelberg, Germany, 2023; pp. 169–189. [Google Scholar]
- Ouyang, S.-Y.; Cai, Z.-G.; Shan, X.F.; Li, Y. Prospective trial of near-infrared spectroscopy for continuous noninvasive monitoring of free fibular flaps. Ann. Plast. Surg. 2021, 87, e29–e36. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.I.; Samson, M.C. The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction. J. Reconstr. Microsurg. 2009, 25, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Rook, A.R.; Chizari, A.; Knop, T.; Evers, D.J.; Rakhorst, H.A.; Steenbergen, W. Handheld Wireless Laser Speckle Contrast Imaging (LSCI) during DIEP Flap Breast Reconstruction: A Pilot Study; Optical Diagnostics and Sensing XXIV: Toward Point-of-Care Diagnostics, 2024; SPIE: Bellingham, WA, USA, 2024; pp. 69–73. [Google Scholar]
- Zötterman, J.; Mirdell, R.; Horsten, S.; Farnebo, S.; Tesselaar, E. Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation. PLoS ONE 2017, 12, e0174703. [Google Scholar]
- Zötterman, J.; Tesselaar, E.; Elawa, S.; Farnebo, S. Correlation between indocyanine green fluorescence angiography and laser speckle contrast imaging in a flap model. Plast. Reconstr. Surg.–Glob. Open 2023, 11, e5187. [Google Scholar] [CrossRef]
- Schulz, T.; Nuwayhid, R.; Houschyar, K.S.; Langer, S.; Kohler, L. Diagnostical accuracy of hyperspectral imaging after free flap surgery. J. Plast. Surg. Hand Surg. 2022, 58, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Asaari, M.S.M.; Mishra, P.; Mertens, S.; Dhondt, S.; Inzé, D.; Wuyts, N.; Scheunders, P. Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS J. Photogramm. Remote Sens. 2018, 138, 121–138. [Google Scholar] [CrossRef]
- Allen, J.; Howell, K. Microvascular imaging: Techniques and opportunities for clinical physiological measurements. Physiol. Meas. 2014, 35, R91. [Google Scholar] [CrossRef] [PubMed]
- Verstockt, J.; Somers, R.; Thiessen, F.; Hoorens, I.; Brochez, L.; Steenackers, G. Finite element skin models as additional data for dynamic infrared thermography on skin lesions. Quant. InfraRed Thermogr. J. 2023, 1–20. [Google Scholar] [CrossRef]
- Valença-Filipe, R.; Vardasca, R.; Magalhães, C.; Mendes, J.; Amarante, J.; Costa-Ferreira, A. Classic Versus Scarpa-sparing abdominoplasty: An infrared thermographic comparative analysis. J. Plast. Reconstr. Aesthetic Surg. 2023, 82, 264–274. [Google Scholar] [CrossRef]
- Muntean, M.V.; Muntean, V.; Ardelean, F.; Georgescu, A. Dynamic perfusion assessment during perforator flap surgery: An up-to-date. Clujul Med. 2015, 88, 293. [Google Scholar] [CrossRef]
- Fiedler, L.S.; Lippert, B.M.; Adrian, L.; Meyer, T. Perfusion in Pedicled skin flaps: Initial Insights from Smartphone-Based Thermal Imaging protocol. J. Pers. Med. 2024, 14, 730. [Google Scholar] [CrossRef]
- Khoong, Y.M.; Huang, X.; Gu, S.; Zan, T. Imaging for thinned perforator flap harvest: Current status and future perspectives. Burn. Trauma 2021, 9, tkab042. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, S.; El-Hendawy, S.; Dewir, Y.H.; Schmidhalter, U.; Ibrahim, H.H.; Ibrahim, M.M.; Elsherbiny, O.; Farouk, M. Estimating the leaf water status and grain yield of wheat under different irrigation regimes using optimized two-and three-band hyperspectral indices and multivariate regression models. Water 2021, 13, 2666. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; El-Hendawy, S.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Mubushar, M.; Hassan, W.M.; Elsayed, S. Potential of hyperspectral and thermal proximal sensing for estimating growth performance and yield of soybean exposed to different drip irrigation regimes under arid conditions. Sensors 2020, 20, 6569. [Google Scholar] [CrossRef]
- Shapey, J.; Xie, Y.; Nabavi, E.; Bradford, R.; Saeed, S.R.; Ourselin, S.; Vercauteren, T. Intraoperative multispectral and hyperspectral label-free imaging: A systematic review of in vivo clinical studies. J. Biophotonics 2019, 12, e201800455. [Google Scholar] [CrossRef]
- Thiessen, F.E.; Tondu, T.; Cloostermans, B.; Dirkx, Y.A.; Auman, D.; Cox, S.; Verhoeven, V.; Hubens, G.; Steenackers, G.; Tjalma, W.A. Dynamic InfraRed Thermography (DIRT) in DIEP-flap breast reconstruction: A review of the literature. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 242, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sun, N.; Wu, P.; Zhou, G.; Peng, L.; Tang, J. The application of infrared thermography technology in flap: A perspective from bibliometric and visual analysis. Int. Wound J. 2023, 20, 4308–4327. [Google Scholar] [CrossRef] [PubMed]
- Verstockt, J.; Thiessen, F.; Cloostermans, B.; Tjalma, W.; Steenackers, G. DIEP flap breast reconstructions: Thermographic assistance as a possibility for perforator mapping and improvement of DIEP flap quality. Appl. Opt. 2020, 59, e48–e56. [Google Scholar] [CrossRef]
- de Weerd, L.; Mercer, J.B.; Weum, S. Dynamic infrared thermography. Clin. Plast. Surg. 2011, 38, 277–292. [Google Scholar] [CrossRef]
- Steenbeek, L.M.; Peperkamp, K.; Ulrich, D.J.; Hummelink, S. Alternative imaging technologies for perforator mapping in free flap breast reconstructive surgery–A comprehensive overview of the current literature. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 4074–4084. [Google Scholar] [CrossRef] [PubMed]
- John, H.E.; Niumsawatt, V.; Rozen, W.M.; Whitaker, I.S. Clinical applications of dynamic infrared thermography in plastic surgery: A systematic review. Gland Surg. 2016, 5, 122. [Google Scholar] [PubMed]
- Ramirez-GarciaLuna, J.L.; Bartlett, R.; Arriaga-Caballero, J.E.; Fraser, R.D.; Saiko, G. Infrared thermography in wound care, surgery, and sports medicine: A review. Front. Physiol. 2022, 13, 210. [Google Scholar] [CrossRef] [PubMed]
- Unger, M.; Markfort, M.; Halama, D.; Chalopin, C. Automatic detection of perforator vessels using infrared thermography in reconstructive surgery. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Cevik, J.; Seth, I.; Hunter-Smith, D.J.; Rozen, W.M. A History of Innovation: Tracing the Evolution of Imaging Modalities for the Preoperative Planning of Microsurgical Breast Reconstruction. J. Clin. Med. 2023, 12, 5246. [Google Scholar] [CrossRef] [PubMed]
- Thiessen, F.E.; Vermeersch, N.; Tondu, T.; Van Thielen, J.; Vrints, I.; Berzenji, L.; Verhoeven, V.; Hubens, G.; Verstockt, J.; Steenackers, G. Dynamic Infrared Thermography (DIRT) in DIEP flap breast reconstruction: A clinical study with a standardized measurement setup. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 252, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Raheman, F.J.; Rojoa, D.M.; Patel, N.G. Performance of infrared thermography and thermal stress test in perforator mapping and flap monitoring: A meta-analysis of diagnostic accuracy. J. Plast. Reconstr. Aesthet. Surg. 2021, 74, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, L.; de Oliveira, G.; de Araújo, R. Dynamic infrared thermography aiding in flaps. J. Dermat. Cosmetol. 2022, 6, 64–72. [Google Scholar] [CrossRef]
- Muntean, M.V.; Strilciuc, S.; Ardelean, F.; Georgescu, A.V. Dynamic infrared mapping of cutaneous perforators. J. Xiangya Med. 2018, 3. [Google Scholar] [CrossRef]
- Weum, S.; Mercer, J.B.; de Weerd, L. Evaluation of dynamic infrared thermography as an alternative to CT angiography for perforator mapping in breast reconstruction: A clinical study. BMC Med. Imaging 2016, 16, 43. [Google Scholar] [CrossRef]
- Sonda, R.; Pandis, L.; Bassetto, F.; Marchica, P.; Messana, F.; Tiengo, C.; Andres, A.L.; Brambullo, T.; Vindigni, V. Deep inferior epigastric perforator flap preoperative planning: A comparative analysis between dynamic infrared thermography, computerized tomography angiography, and hand-held Doppler. Microsurgery 2022, 42, 649–658. [Google Scholar] [CrossRef] [PubMed]
- de Weerd, L.; Weum, S.; Mercer, J.B. The value of dynamic infrared thermography (DIRT) in perforatorselection and planning of free DIEP flaps. Ann. Plast. Surg. 2009, 63, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.M.; Kanapathy, M.; Khater, A.M.; El-Sabbagh, A.H.; Shouman, O.; Nikkhah, D.; Mosahebi, A. Uses of Smartphone Thermal Imaging in Perforator Flaps as a Versatile Intraoperative Tool: The Microsurgeon’s Third Eye. JPRAS Open 2023, 38, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Niepel, A.L.; Dominik, S.; Lewicki, M.; Fuat, S.; Gerhard, K.; Helga, P.; Dirk, H.; Kömürcü, F. Decision between contralateral and ipsilateral DIEP flap harvesting for unilateral breast reconstruction. Eur. J. Plast. Surg. 2019, 42, 29–32. [Google Scholar] [CrossRef]
- Hochstaffl, P.; Schreier, F.; Lichtenberg, G.; Gimeno García, S. Validation of carbon monoxide total column retrievals from SCIAMACHY observations with NDACC/TCCON ground-based measurements. Remote Sens. 2018, 10, 223. [Google Scholar] [CrossRef]
- Verstockt, J.; Verspeek, S.; Thiessen, F.; Tjalma, W.A.; Brochez, L.; Steenackers, G. Skin cancer detection using infrared thermography: Measurement setup, procedure and equipment. Sensors 2022, 22, 3327. [Google Scholar] [CrossRef]
- Zhou, Z.; Pandey, R.; Valdez, T.A. Label-Free Optical Technologies for Middle-Ear Diseases. Bioengineering 2024, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Carr, J.A.; Valdez, T.A.; Bruns, O.T.; Bawendi, M.G. Using the shortwave infrared to image middle ear pathologies. Proc. Natl. Acad. Sci. USA 2016, 113, 9989–9994. [Google Scholar] [CrossRef]
- Tran, M.H.; Fei, B. Compact and ultracompact spectral imagers: Technology and applications in biomedical imaging. J. Biomed. Opt. 2023, 28, 040901. [Google Scholar] [CrossRef]
- Salimi, M.; Roshanfar, M.; Tabatabaei, N.; Mosadegh, B. Machine Learning-Assisted Short-Wave InfraRed (SWIR) Techniques for Biomedical Applications: Towards Personalized Medicine. J. Pers. Med. 2023, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- AlZubaidi, A.K.; Ethawi, Y.; Schmölzer, G.M.; Sherif, S.; Narvey, M.; Seshia, M. Review of biomedical applications of contactless imaging of neonates using infrared thermography and beyond. Methods Protoc. 2018, 1, 39. [Google Scholar] [CrossRef] [PubMed]
- Cholewka, A.; Kajewska, J.; Marek, K.; Sieroń-Stołtny, K.; Stanek, A. How to use thermal imaging in venous insufficiency? J. Therm. Anal. Calorim. 2017, 130, 1317–1326. [Google Scholar] [CrossRef]
- Wilson, R.H.; Nadeau, K.P.; Jaworski, F.B.; Tromberg, B.J.; Durkin, A.J. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. J. Biomed. Opt. 2015, 20, 030901. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Gu, J. Artificial intelligence in plastic surgery: Current developments and future perspectives. Plast. Aesthetic Res. 2023, 10, 3. [Google Scholar] [CrossRef]
- Le, E.; Wang, Y.; Huang, Y.; Hickman, S.; Gilbert, F. Artificial intelligence in breast imaging. Clin. Radiol. 2019, 74, 357–366. [Google Scholar] [CrossRef]
- Cevik, J.; Seth, I.; Rozen, W.M. Transforming breast reconstruction: The pioneering role of artificial intelligence in preoperative planning. Gland Surg. 2023, 12, 1271. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J. Hyperspectral Imaging for Clinical Applications. BioChip J. 2022, 16, 1–12. [Google Scholar] [CrossRef]
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef]
- Klang, E. Deep learning and medical imaging. J. Thorac. Dis. 2018, 10, 1325. [Google Scholar] [CrossRef]
Case | Keywords |
---|---|
Optical imaging | “optical imaging”, “imaging techniques”, “non-invasive imaging”, “optical coherence tomography”, “fluorescence imaging”, “near-infrared spectroscopy”, “hyperspectral imaging”, “laser speckle contrast imaging” |
DIEP flap reconstruction | “DIEP flap”, “deep inferior epigastric perforator flap”, “breast reconstruction”, “flap surgery”, “microsurgery”, “tissue transfer” |
Tissue perfusion | “tissue perfusion”, “blood flow”, “microcirculation”, “perfusion imaging” |
Surgical outcomes | “surgical outcomes”, “postoperative results”, “surgery success rates”, “complication rates” |
Optical Modality | Wavelength Used | References |
---|---|---|
Near-infrared spectroscopy (NIRS) | 700–1000 nm | [19,41,42,43,44] |
Indocyanine green (ICG fluorescence angiography) | 750–810 nm | [17,19,23,45] |
Laser speckle contrast imaging (LSCI) | 660–785 nm | [30,46,47,48] |
Hyperspectral imaging (HSI) | 400–1000 nm | [38,49,50,51] |
Dynamic thermography (DIRT) | 650–1400 nm | [52,53,54,55] |
Short-wave infrared thermography (SWIR) | 1000–2500 nm | [56,57,58] |
Modality | Concept Description | Advantages | Limitations |
---|---|---|---|
Near-infrared spectroscopy | Analyzes tissue by measuring how it absorbs near-infrared light | Noninvasive; low-cost; detects vascular compromise early and fast | Its accuracy can be affected by external factors such as ambient light and tissue thickness |
Indocyanine green angiography * | Utilizes indocyanine green dye allowing it to visualize deeper vascular structures like the choroidal vasculature | Real-time; highly sensitive and specific to blood flow | Costly; minimally invasive; safety issue (allergy) |
Laser speckle contrast imaging | A random interference pattern is created when laser light scatters from a diffusing surface of red blood cells | Noninvasive; real-time | Low penetration depth; technique sensitive |
Hyperspectral imaging | Hyperspectral imaging captures and analyzes light across a very wide range of wavelengths, creating a detailed “fingerprint” of an object’s composition. | Noninvasive; real-time; comprehensive analysis possible | Complex data interpretation |
Thermographic imaging and dynamic infrared thermography | Detects temperature variations on the skin surface using infrared technology, which are indicative of underlying vascular activity | Noninvasive; real-time; high applicability (smartphone) | Vulnerable to ambient temperature; low image resolution |
Short-wave infrared imaging | Uses light beyond the visible spectrum to create detailed heat maps of objects, revealing temperature variations not seen with the naked eye | Noninvasive; real-time; deeper penetration than visible light; | Costly; difficulty in data interpretation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.H.; Song, I.-S.; Cha, R.J. Advancing DIEP Flap Monitoring with Optical Imaging Techniques: A Narrative Review. Sensors 2024, 24, 4457. https://doi.org/10.3390/s24144457
Kim HH, Song I-S, Cha RJ. Advancing DIEP Flap Monitoring with Optical Imaging Techniques: A Narrative Review. Sensors. 2024; 24(14):4457. https://doi.org/10.3390/s24144457
Chicago/Turabian StyleKim, Hailey Hwiram, In-Seok Song, and Richard Jaepyeong Cha. 2024. "Advancing DIEP Flap Monitoring with Optical Imaging Techniques: A Narrative Review" Sensors 24, no. 14: 4457. https://doi.org/10.3390/s24144457
APA StyleKim, H. H., Song, I. -S., & Cha, R. J. (2024). Advancing DIEP Flap Monitoring with Optical Imaging Techniques: A Narrative Review. Sensors, 24(14), 4457. https://doi.org/10.3390/s24144457