Research Progress on Ammonia Sensors Based on Ti3C2Tx MXene at Room Temperature: A Review
Abstract
:1. Introduction
2. Synthesis of Ti3C2Tx MXene
2.1. HF Etching
2.2. In-Situ HF Etching
2.3. Alkali Solution Etching
3. Ti3C2Tx MXene-Based Nanocomposites Material Gas Sensors for NH3
3.1. Metal Oxide Modification
3.2. Conductive Polymer Addition
3.3. Other 2D Material Hybrids
4. Ti3C2Tx MXenes-Based Nanocomposite Material Mechanism for NH3
5. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Garg, N.; Kumar, M.; Kumari, N.; Deep, A.; Sharma, A.L. Chemoresistive room-temperature sensing of ammonia using zeolite imidazole framework and reduced graphene oxide (ZIF-67/rGO) composite. ACS Omega 2020, 5, 27492–27501. [Google Scholar] [CrossRef] [PubMed]
- Yap, S.H.K.; Chan, K.K.; Tjin, S.C.; Yong, K.T. Carbon allotrope-based optical fibers for environmental and biological sensing: A review. Sensors 2020, 20, 2046. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhou, T.; Xia, H.; Zhang, T. Flexible room-temperature ammonia gas sensors based on PANI-MWCNTs/PDMS film for breathing analysis and food safety. Nanomaterials 2023, 13, 1158. [Google Scholar] [CrossRef] [PubMed]
- Fairose, S.; Ernest, S.; Daniel, S. Effect of oxygen sputter pressure on the structural, morphological and optical properties of ZnO thin films for gas sensing application. Sens. Imaging 2018, 19, 1. [Google Scholar] [CrossRef]
- Seekaew, Y.; Pon-On, W.; Wongchoosuk, C. Ultrahigh selective room-temperature ammonia gas sensor based on tin-titanium dioxide/reduced graphene/carbon nanotube nanocomposites by the solvothermal method. ACS Omega 2019, 4, 16916–16924. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Ma, X.; Liu, L.; Gao, S.; Zhang, X.; Xu, Y.; Cheng, X.; Zhao, H.; Huo, L. In-situ deposition of POMA/ZnO nanorods array film by vapor phase polymerization for detection of trace ammonia in human exhaled breath at room temperature. Anal. Chim. Acta 2022, 1199, 339563. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhang, H.; Song, B.; Yuan, K.; Xiao, H.; Cao, Y.; Cao, Q. Metal-organic framework (MOF) derivatives as promising chemiresistive gas sensing materials: A review. Int. J. Environ. Res. Public Health 2023, 20, 4388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jia, Z.; Liu, T.; Wei, G.; Su, Z. Electrospinning nanoparticles-based materials interfaces for sensor applications. Sensors 2019, 19, 3977. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-F.; Song, X.-Z.; Sun, K.-M.; Cheng, L.; Ma, W. MOFs-derived porous nanomaterials for gas sensing. Polyhedron 2018, 152, 155–163. [Google Scholar] [CrossRef]
- Tai, H.; Yuan, Z.; Zheng, W.; Ye, Z.; Liu, C.; Du, X. ZnO nanoparticles/reduced graphene oxide bilayer thin films for improved NH3-sensing performances at room temperature. Nanoscale Res. Lett. 2016, 11, 130. [Google Scholar] [CrossRef]
- Maity, A.; Raychaudhuri, A.K.; Ghosh, B. High sensitivity NH3 gas sensor with electrical readout made on paper with perovskite halide as sensor material. Sci. Rep. 2019, 9, 7777. [Google Scholar] [CrossRef]
- Tian, X.; Wang, S.; Yao, B.; Wang, Z.; Chen, T.; Xiao, X.; Wang, Y. Edge sulfur vacancies riched MoS2 nanosheets assist PEDOT:PSS flexible film ammonia sensing enhancement for wireless greenhouse vegetables monitoring. J. Hazard. Mater. 2024, 465, 133195. [Google Scholar] [CrossRef]
- Jimmy, J.; Kandasubramanian, B. Mxene functionalized polymer composites: Synthesis and applications. Eur. Polym. J. 2020, 122, 109367. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Qin, R.; Shan, G.; Hu, M.; Huang, W. Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys. 2021, 21, 100527. [Google Scholar] [CrossRef]
- Zhang, H.-F.; Xuan, J.-Y.; Zhang, Q.; Sun, M.-L.; Jia, F.-C.; Wang, X.-M.; Yin, G.-C.; Lu, S.-Y. Strategies and challenges for enhancing performance of MXene-based gas sensors: A review. Rare Met. 2022, 41, 3976–3999. [Google Scholar] [CrossRef]
- Xiong, D.; Shi, Y.; Yang, H.Y. Rational design of MXene-based films for energy storage: Progress, prospects. Mater. Today 2021, 46, 183–211. [Google Scholar] [CrossRef]
- Lee, E.; VahidMohammadi, A.; Prorok, B.C.; Yoon, Y.S.; Beidaghi, M.; Kim, D.-J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190. [Google Scholar] [CrossRef]
- Lee, S.H.; Eom, W.; Shin, H.; Ambade, R.B.; Bang, J.H.; Kim, H.W.; Han, T.H. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 2020, 12, 10434–10442. [Google Scholar] [CrossRef]
- Mirzaei, A.; Lee, M.H.; Safaeian, H.; Kim, T.U.; Kim, J.Y.; Kim, H.W.; Kim, S.S. Room temperature chemiresistive gas sensors based on 2D MXenes. Sensors 2023, 23, 8829. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Simonenko, N.P.; Mokrushin, A.S.; Simonenko, T.L.; Gorobtsov, P.Y.; Nagornov, I.A.; Korotcenkov, G.; Sysoev, V.V.; Kuznetsov, N.T. Application of titanium carbide MXenes in chemiresistive gas sensors. Nanomaterials 2023, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.; Duan, Z.; He, Z.; Li, X.; Xu, J.; Liu, B.; Jiang, Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens. Actuators B Chem. 2019, 298, 126874. [Google Scholar] [CrossRef]
- Qin, Y.; Gui, H.; Bai, Y.; Liu, S. Enhanced NH3 sensing performance at ppb level derived from Ti3C2Tx-supported ZnTi-LDHs nanocomposite with similar metal-semiconductor heterostructure. Sens. Actuators B Chem. 2022, 352, 131077. [Google Scholar] [CrossRef]
- Xiong, J.; Cai, Y.; Nie, X.; Wang, Y.; Song, H.; Sharif, H.M.A.; Li, Z.; Li, C. PANI/3D crumpled Ti3C2Tx/TiO2 nanocomposites for flexible conductometric NH3 sensors working at room temperature. Sens. Actuators B Chem. 2023, 390, 133987. [Google Scholar] [CrossRef]
- Seekaew, Y.; Kamlue, S.; Wongchoosuk, C. Room-temperature ammonia gas sensor based on Ti3C2Tx MXene/graphene oxide/CuO/ZnO nanocomposite. ACS Appl. Nano Mater. 2023, 6, 9008–9020. [Google Scholar] [CrossRef]
- Mirabella, D.A.; Buono, C.; Aldao, C.M.; Resasco, D.E. Chemisorption and sensitivity at semiconductor sensors revisited. Sens. Actuators B Chem. 2019, 285, 232–239. [Google Scholar] [CrossRef]
- Haick, H.; Ambrico, M.; Ligonzo, T.; Tung, R.T.; Cahen, D. Controlling semiconductor/metal junction barriers by incomplete, nonideal molecular monolayers. J. Am. Chem. Soc. 2006, 128, 6854–6869. [Google Scholar] [CrossRef]
- Turaeva, N.; Krueger, H. Wolkenstein’s model of size effects in CO oxidation by gold nanoparticles. Catalysts 2020, 10, 288. [Google Scholar] [CrossRef]
- Ng, W.H.K.; Gnanakumar, E.S.; Batyrev, E.; Sharma, S.K.; Pujari, P.K.; Greer, H.F.; Zhou, W.; Sakidja, R.; Rothenberg, G.; Barsoum, M.W.; et al. The Ti3AlC2 MAX phase as an efficient catalyst for oxidative dehydrogenation of n-Butane. Angew. Chem. Int. Ed. 2018, 57, 1485–1490. [Google Scholar] [CrossRef]
- Tian, X.; Yao, L.; Cui, X.; Zhao, R.; Chen, T.; Xiao, X.; Wang, Y. A two-dimensional Ti3C2Tx MXene@TiO2/MoS2 heterostructure with excellent selectivity for the room temperature detection of ammonia. J. Mater. Chem. A 2022, 10, 5505–5519. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Mashtalir, O.; Naguib, M.; Dyatkin, B.; Gogotsi, Y.; Barsoum, M.W. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys. 2013, 139, 147–152. [Google Scholar] [CrossRef]
- Lian, W.; Mai, Y.; Liu, C.; Zhang, L.; Li, S.; Jie, X. Two-dimensional Ti3C2 coating as an emerging protective solid-lubricant for tribology. Ceram. Int. 2018, 44, 20154–20162. [Google Scholar] [CrossRef]
- Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F. Organic-Base-Driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 2016, 55, 14569–14574. [Google Scholar] [CrossRef] [PubMed]
- Dillon, A.D.; Ghidiu, M.J.; Krick, A.L.; Griggs, J.; May, S.J.; Gogotsi, Y.; Barsoum, M.W.; Fafarman, A.T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016, 26, 4162–4168. [Google Scholar] [CrossRef]
- Song, M.; Pang, S.-Y.; Guo, F.; Wong, M.-C.; Hao, J. Fluoride-free 2D niobium carbide MXenes as stable and biocompatible nanoplatforms for electrochemical biosensors with ultrahigh sensitivity. Adv. Sci. 2020, 7, 2001546. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef]
- Han, D.; Liu, Z.-H.; Liu, L.-L.; Han, X.-M.; Liu, D.-M.; Zhuo, K.; Sang, S.-B. Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene. Acta Phys. Sin. 2022, 71, 010701-1–010701-9. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, A.; Wang, C.; Liu, F.; He, J.; Li, S.; Wang, J.; You, R.; Yan, X.; Sun, P.; et al. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 2019, 4, 1261–1269. [Google Scholar] [CrossRef]
- Tian, Z.; Tian, H.; Cao, K.; Bai, S.; Peng, Q.; Wang, Y.; Zhu, Q. Facile preparation of Ti3C2Tx sheets by selectively etching in a H2SO4/H2O2 mixture. Front. Chem. 2022, 10, 962528. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, B.; Wang, R. Progress in the synthesis process and electrocatalytic application of MXene materials. Materials 2023, 16, 6816. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bao, W.; Jaumaux, P.; Zhang, S.; Wang, C.; Wang, G. MXene-Based composites: Synthesis and applications in rechargeable batteries and supercapacitors. Adv. Mater. Interfaces 2019, 6, 1802004. [Google Scholar] [CrossRef]
- Nan, J.; Guo, X.; Xiao, J.; Li, X.; Chen, W.; Wu, W.; Liu, H.; Wang, Y.; Wu, M.; Wang, G. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, 1902085. [Google Scholar] [CrossRef] [PubMed]
- Qian, A.; Wu, H.; Wang, G.; Sun, N.; Cheng, H.; Zhang, K.; Cheng, F. Freeing fluoride termination of Ti3C2Tx via electrochemical etching for high-performance capacitive deionization. ACS Appl. Mater. Interfaces 2023, 15, 9203–9211. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Wang, Y.; Xie, Z.; Wang, D.; Yuan, Y.; Kang, H.; Su, B.; Cheng, Z.; Liu, Y. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 2018, 5, 1800750. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Li, Z.; Hu, T.; Zhu, S.; Zhang, C.; Wang, X. High-Capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical raman spectroscopy investigation. ACS Nano 2016, 10, 11344–11350. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, J.; Guan, A.; Wang, Q.; Li, S.; Al-Enizi, A.M.; Qian, L.; Zhang, L.; Zheng, G. Promoting N2 electroreduction to ammonia by fluorine-terminating Ti3C2Tx MXene. Nano Converg. 2021, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Ghazaly, A.E.; Ahmed, H.; Rezk, A.R.; Halim, J.; Persson, P.O.Å.; Yeo, L.Y.; Rosen, J. Ultrafast, one-step, salt-solution-based acoustic synthesis of Ti3C2 MXene. ACS Nano 2021, 15, 4287–4293. [Google Scholar] [CrossRef]
- Lipatov, A.; Alhabeb, M.; Lukatskaya, M.R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255. [Google Scholar] [CrossRef]
- Halim, J.; Lukatskaya, M.R.; Cook, K.M.; Lu, J.; Smith, C.R.; Näslund, L.-Å.; May, S.J.; Hultman, L.; Gogotsi, Y.; Eklund, P.; et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gong, Y.; Yang, B.; Mao, Z.; Yan, Z.; Su, C.; Xiong, S.; Long, X.; Wang, X. Fabrication of SnO2-TiO2-Ti3C2Tx hybrids with multiple-type heterojunctions for enhanced gas sensing performance at room temperature. Appl. Surf. Sci. 2022, 581, 152364. [Google Scholar] [CrossRef]
- Sai Bhargava Reddy, M.; Aich, S. Recent progress in surface and heterointerface engineering of 2D MXenes for gas sensing applications. Coord. Chem. Rev. 2024, 500, 215542. [Google Scholar] [CrossRef]
- Hou, M.; Jiang, G.; Guo, S.; Gao, J.; Shen, Z.; Wang, Z.; Ye, X.; Yang, L.; Du, Q.; Yi, J.; et al. Mxene Ti3C2Tx derived lamellar Ti3C2Tx-TiO2-CuO heterojunction: Significantly improved ammonia sensor performance. Arab. J. Chem. 2023, 16, 104808. [Google Scholar] [CrossRef]
- Wu, M.; He, M.; Hu, Q.; Wu, Q.; Sun, G.; Xie, L.; Zhang, Z.; Zhu, Z.; Zhou, A. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 2019, 4, 2763–2770. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Sun, S.; Huang, B.; Li, X. MXene/SnS2 heterojunction for detecting sub-ppm NH3 at room temperature. ACS Appl. Mater. Interfaces 2023, 15, 4194–4207. [Google Scholar] [CrossRef]
- Zhou, M.; Han, Y.; Yao, Y.; Xie, L.; Zhao, X.; Wang, J.; Zhu, Z. Fabrication of Ti3C2Tx/In2O3 nanocomposites for enhanced ammonia sensing at room temperature. Ceram. Int. 2022, 48, 6600–6607. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Thomas, A.M.; Vidyasagar, D.; Rao, V.N.; Yoon, S.-G.; Kim, Y.-H.; Kim, S.-G.; Kim, M.-D. ZnO@Ti3C2Tx MXene hybrid composite-based schottky-barrier-coated SAW sensor for effective detection of sub-ppb-level NH3 at room temperature under UV illumination. ACS Mater. Lett. 2023, 5, 2739–2746. [Google Scholar] [CrossRef]
- Tang, W.; Wang, J. Enhanced gas sensing mechanisms of metal oxide heterojunction gas sensors. Acta Phys. Chim. Sin. 2016, 32, 1087–1104. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Chougule, S.S.; Vidyasagar, D.; Bak, N.-h.; Jung, N.; Kim, Y.-H.; Lee, J.-H.; Kim, S.-G.; Kim, M.-D. UV light driven high-performance room temperature surface acoustic wave NH3 gas sensor using sulfur-doped g-C3N4 quantum dots. Nano Res. 2023, 16, 7682–7695. [Google Scholar] [CrossRef]
- Zhao, Q.-N.; Zhang, Y.-J.; Duan, Z.-H.; Wang, S.; Liu, C.; Jiang, Y.-D.; Tai, H.-L. A review on Ti3C2Tx-based nanomaterials: Synthesis and applications in gas and humidity sensors. Rare Met. 2021, 40, 1459–1476. [Google Scholar] [CrossRef]
- Xiong, S.; Zhou, J.; Wu, J.; Li, H.; Zhao, W.; He, C.; Liu, Y.; Chen, Y.; Fu, Y.; Duan, H. High performance acoustic wave nitrogen dioxide sensor with ultraviolet activated 3D porous architecture of Ag-decorated reduced graphene oxide and polypyrrole aerogel. ACS Appl. Mater. Interfaces 2021, 13, 42094–42103. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, T.; Liang, Y.; Zhang, C.; Zhai, S.; Sun, J.; Wang, W. Enhanced sensitivity of SAW based ammonia sensor employing GO-SnO2 nanocomposites. Sens. Actuators B Chem. 2023, 375, 132884. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, S.; Wang, X.; Huang, J.; Pan, W.; Zhang, J.; Meteku, B.E.; Zeng, J. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 2022, 423, 127160. [Google Scholar] [CrossRef] [PubMed]
- Kan, Z.; Shi, F.; Yang, L.; Zhou, Q.; Zhang, Y.; Qi, Y.; Zhang, H.; Dong, B.; Ren, L.; Song, H.; et al. A dual-mode foam sensor employing Ti3C2Tx/In2O3 composites for NH3 detection with memory function and body movement monitoring for kidney disease diagnosis. J. Mater. Chem. A 2023, 11, 24299–24310. [Google Scholar] [CrossRef]
- Liu, J.; Lin, X.; Sun, M.; Du, B.; Li, L.; Bai, J.; Zhou, M. Thiourea-assistant growth of In2O3 porous pompon assembled from 2D nanosheets for enhanced ethanol sensing performance. Talanta 2020, 219, 121323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yang, Z.; Li, P.; Zhou, X. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens. Actuators B Chem. 2019, 301, 127081. [Google Scholar] [CrossRef]
- He, T.; Liu, W.; Lv, T.; Ma, M.; Liu, Z.; Vasiliev, A.; Li, X. MXene/SnO2 heterojunction based chemical gas sensors. Sens. Actuators B Chem. 2021, 329, 129275. [Google Scholar] [CrossRef]
- Britnell, L.; Ribeiro, R.M.; Eckmann, A.; Jalil, R.; Belle, B.D.; Mishchenko, A.; Kim, Y.J.; Gorbachev, R.V.; Georgiou, T.; Morozov, S.V.; et al. Strong light-matter interactions in heterostructures of atomically Thin films. Science 2013, 340, 1311–1314. [Google Scholar] [CrossRef]
- Guo, X.; Ding, Y.; Kuang, D.; Wu, Z.; Sun, X.; Du, B.; Liang, C.; Wu, Y.; Qu, W.; Xiong, L.; et al. Enhanced ammonia sensing performance based on MXene-Ti3C2Tx multilayer nanoflakes functionalized by tungsten trioxide nanoparticles. J. Colloid Interface Sci. 2021, 595, 6–14. [Google Scholar] [CrossRef]
- Yang, J.; Gui, Y.; Wang, Y.; He, S. NiO/Ti3C2Tx MXene nanocomposites sensor for ammonia gas detection at room temperature. J. Ind. Eng. Chem. 2023, 119, 476–484. [Google Scholar] [CrossRef]
- Liu, M.; Ding, Y.; Lu, Z.; Song, P.; Wang, Q. Layered Ti3C2Tx MXene/CuO spindles composites for NH3 detection at room-temperature. J. Alloys Compd. 2023, 938, 168563. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Song, P.; Ji, J.; Wang, Q. Metal-organic frameworks-derived In2O3 microtubes/Ti3C2Tx MXene composites for NH3 detection at room temperature. Sens. Actuators B Chem. 2022, 361, 131755. [Google Scholar] [CrossRef]
- Yao, L.J.; Tian, X.; Cui, X.X.; Zhao, R.J.; Chen, T.; Xiao, X.C.; Wang, Y.D. Low operating temperature and highly selective NH3 chemiresistive gas sensors based on a novel 2D Ti3C2Tx/ZnO composite with p–n heterojunction. Appl. Phys. Rev. 2023, 10, 031414. [Google Scholar] [CrossRef]
- Yao, L.; Tian, X.; Cui, X.; Zhao, R.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Two-dimensional Ti3C2Tx MXene/SnO nanocomposites: Towards enhanced response and selective ammonia vapor sensor at room temperature. Sens. Actuators B Chem. 2022, 358, 131501. [Google Scholar] [CrossRef]
- Liu, M.; Ji, J.; Song, P.; Wang, J.; Wang, Q. Sensing performance of α-Fe2O3/Ti3C2Tx MXene nanocomposites to NH3 at room temperature. J. Alloys Compd. 2022, 898, 162812. [Google Scholar] [CrossRef]
- Syrový, T.; Kuberský, P.; Sapurina, I.; Pretl, S.; Bober, P.; Syrová, L.; Hamáček, A.; Stejskal, J. Gravure-printed ammonia sensor based on organic polyaniline colloids. Sens. Actuators B Chem. 2016, 225, 510–516. [Google Scholar] [CrossRef]
- Bandgar, D.K.; Navale, S.T.; Nalage, S.R.; Mane, R.S.; Stadler, F.J.; Aswal, D.K.; Gupta, S.K.; Patil, V.B. Simple and low-temperature polyaniline-based flexible ammonia sensor: A step towards laboratory synthesis to economical device design. J. Mater. Chem. C 2015, 3, 9461–9468. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Jiang, Y.; He, Z.; Liu, B.; Xie, H.; Li, H.; Li, Z.; Wang, Y.; Tai, H. Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor. Sens. Actuators B Chem. 2020, 316, 128144. [Google Scholar] [CrossRef]
- Wen, X.; Cai, Y.; Nie, X.; Xiong, J.; Wang, Y.; Song, H.; Li, Z.; Shen, Y.; Li, C. PSS-doped PANI nanoparticle/Ti3C2Tx composites for conductometric flexible ammonia gas sensors operated at room temperature. Sens. Actuators B Chem. 2023, 374, 132788. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.E.; Zhou, A.A.; Huang, Z.; Bai, H.; Li, L. Phase-separated polyaniline/graphene composite electrodes for high-rate electrochemical supercapacitors. Adv. Mater. 2016, 28, 10211–10216. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, J.; Liu, J.; Li, G.; Qiao, Y.; Zhang, X.; Gao, J.; Lu, H. PANI/Ti3C2Tx composite nanofiber-based flexible conductometric sensor for the detection of NH3 at room temperature. Sens. Actuators B Chem. 2023, 392, 134128. [Google Scholar] [CrossRef]
- Rather, M.H.; Mir, F.A.; Ullah, F.; Bhat, M.A.; Najar, F.A.; Shakeel, G.; Shah, A.H. Polyaniline nanoparticles: A study on its structural, optical, electrochemical properties along with some possible device applications. Synth. Met. 2022, 290, 117152. [Google Scholar] [CrossRef]
- Rojas, R.; Pinto, N.J. Using electrospinning for the fabrication of rapid response gas sensors based on conducting polymer nanowires. IEEE Sens. J. 2008, 8, 951–953. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, J.J.; Chen, D.; Tuller, H.L.; Rutledge, G.C. Electrospun polyaniline fibers as highly sensitive room temperature chemiresistive sensors for ammonia and nitrogen dioxide gases. Adv. Funct. Mater. 2014, 24, 4005–4014. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Park, M.K.; Ko, S.H. Recent developments in wearable breath sensors for healthcare monitoring. Commun. Mater. 2024, 5, 41. [Google Scholar] [CrossRef]
- Sun, B.; Ding, Y.; Wang, Q.; Song, P. Rational design of 1D/2D heterostructured ZnSnO3/ZnO/Ti3C2TX MXene nanocomposites for enhanced acetone gas sensing performance. Sens. Actuators B Chem. 2024, 409, 135541. [Google Scholar] [CrossRef]
- Gui, Y.; Zhang, W.; Liu, S.; Li, Y.; Yang, J.; Jin, G.; Huang, H.; Yang, P.; Gao, M. Self-driven sensing of acetylene powered by a triboelectric-electromagnetic hybrid generator. Nano Energy 2024, 124, 109498. [Google Scholar] [CrossRef]
- Peng, H.; Yang, J.; Lin, C.; Qi, L.; Li, L.; Shi, K. Gas-sensitive performance of metal-organic framework-derived CuO NPs/Ti3C2TX MXene heterostructures for efficient NO2 detection at room temperature. J. Alloys Compd. 2024, 980, 173657. [Google Scholar] [CrossRef]
- Seekaew, Y.; Lokavee, S.; Phokharatkul, D.; Wisitsoraat, A.; Kerdcharoen, T.; Wongchoosuk, C. Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Org. Electron. 2014, 15, 2971–2981. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, L.; Chen, L.; Zhang, J.; Shen, L.; Chen, Q.; Shi, W. Fully gravure-printed NO2 gas sensor on a polyimide foil using WO3-PEDOT:PSS nanocomposites and Ag electrodes. Sens. Actuators B Chem. 2015, 216, 176–183. [Google Scholar] [CrossRef]
- Jin, L.; Wu, C.; Wei, K.; He, L.; Gao, H.; Zhang, H.; Zhang, K.; Asiri, A.M.; Alamry, K.A.; Yang, L.; et al. Polymeric Ti3C2Tx MXene composites for room temperature ammonia sensing. ACS Appl. Nano Mater. 2020, 3, 12071–12079. [Google Scholar] [CrossRef]
- Atkare, S.; Kaushik, S.D.; Jagtap, S.; Rout, C.S. Room-temperature chemiresistive ammonia sensors based on 2D MXenes and their hybrids: Recent developments and future prospects. Dalton Trans. 2023, 52, 13831–13851. [Google Scholar] [CrossRef]
- Qiu, J.; Xia, X.; Hu, Z.; Zhou, S.; Wang, Y.; Wang, Y.; Zhang, R.; Li, J.; Zhou, Y. Molecular ammonia sensing of PEDOT:PSS/nitrogen doped MXene Ti3C2Tx composite film at room temperature. Nanotechnology 2022, 33, 065501. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, Y.; Wang, K.; Lv, C.; Wei, W.; Wang, L.; Han, W. Highly stable cross-linked cationic polyacrylamide/Ti3C2Tx MXene nanocomposites for flexible ammonia-recognition devices. Adv. Mater. Technol. 2020, 5, 2000248. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, Z.; Shao, Z.; Tian, Y.; Li, B.; Huang, B.; Zhang, S.; Liu, C.; Shen, X. Highly selective NH3 gas sensor based on polypyrrole/Ti3C2Tx nanocomposites operating at room temperature. J. Mater. Sci. Mater. Electron. 2022, 33, 6168–6177. [Google Scholar] [CrossRef]
- Zhou, J.; Hosseini Shokouh, S.H.; Komsa, H.-P.; Rieppo, L.; Cui, L.; Lv, Z.-P.; Kordas, K. MXene-polymer hybrid for high-performance gas sensor prepared by microwave-assisted in-situ intercalation. Adv. Mater. Technol. 2022, 7, 2101565. [Google Scholar] [CrossRef]
- You, C.-W.; Fu, T.; Li, C.-B.; Song, X.; Tang, B.; Song, X.; Yang, Y.; Deng, Z.-P.; Wang, Y.-Z.; Song, F. A latent-fire-detecting olfactory system enabled by ultra-fast and sub-ppm ammonia-responsive Ti3C2Tx MXene/MoS2 sensors. Adv. Funct. Mater. 2022, 32, 2208131. [Google Scholar] [CrossRef]
- Sardana, S.; Debnath, A.K.; Aswal, D.K.; Mahajan, A. WS2 nanosheets decorated multi-layered MXene based chemiresistive sensor for efficient detection and discrimination of NH3 and NO2. Sens. Actuators B Chem. 2023, 394, 134352. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B Chem. 2011, 160, 580–591. [Google Scholar] [CrossRef]
- Lee, H.S.; Min, S.-W.; Chang, Y.-G.; Park, M.K.; Nam, T.; Kim, H.; Kim, J.H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, C.; Sun, Y. Room-temperature high-performance ammonia gas sensor based on layer-by-layer self-assembled molybdenum disulfide/zinc oxide nanocomposite film. J. Alloys Compd. 2017, 698, 476–483. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, D.; Wang, D.; Deng, J.; Kong, D.; Zhang, H. Performance prediction of 2D vertically stacked MoS2-WS2 heterostructures base on first-principles theory and Pearson correlation coefficient. Appl. Surf. Sci. 2022, 596, 153498. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, A.; Zhou, X.; Chen, F.; Fu, Q. Fabrication of aramid nanofiber-wrapped graphene fibers by coaxial spinning. Carbon 2020, 165, 340–348. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Neto, A.H.C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef]
- Hermawan, A.; Zhang, B.; Taufik, A.; Asakura, Y.; Hasegawa, T.; Zhu, J.; Shi, P.; Yin, S. CuO nanoparticles/Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas. ACS Appl. Nano Mater. 2020, 3, 4755–4766. [Google Scholar] [CrossRef]
- Song, Z.; Yan, J.; Lian, J.; Pu, W.; Jing, L.; Xu, H.; Li, H. Graphene oxide-loaded SnO2 quantum wires with sub-4 nanometer diameters for low-temperature H2S gas sensing. ACS Appl. Nano Mater. 2020, 3, 6385–6393. [Google Scholar] [CrossRef]
- Yan, W.; Xu, H.; Ling, M.; Zhou, S.; Qiu, T.; Deng, Y.; Zhao, Z.; Zhang, E. MOF-derived porous hollow Co3O4@ZnO cages for high-performance MEMS trimethylamine sensors. ACS Sens. 2021, 6, 2613–2621. [Google Scholar] [CrossRef]
- Lin, M.; Huang, Y.; Lei, Z.; Liu, N.; Huang, C.; Qi, F.; Zhao, N.; Zhou, Y.; Cao, J.; OuYang, X. UV-promoted NH3 sensor based on Ti3C2Tx/TiO2/ graphene sandwich structure with ultrasensitive RT sensing performances for human health detection. Sens. Actuators B Chem. 2024, 410, 135681. [Google Scholar] [CrossRef]
- Yuxiang, Q.; Jing, X.; Yinan, B. Synergistic enhanced NH3-sensing of SnS via Ti3C2Tx-oriented vertical growth and oxygen-containing functional group regulation. Environ. Sci. Nano 2022, 9, 1805–1818. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Hazra, A. MXene-based gas sensors. J. Mater. Chem. C 2021, 9, 15735–15754. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Li, Z.; Zhang, S.; Deng, X.; Zhao, G.; Xu, X. Highly sensitive and low working temperature detection of trace triethylamine based on TiO2 nanoparticles decorated CuO nanosheets sensors. Sens. Actuators B Chem. 2019, 301, 127019. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Luo, N.; Xu, X.; Sun, G.; Wang, Y.; Cao, J. TiO2/ZnCo2O4 porous nanorods: Synthesis and temperature-dependent dual selectivity for sensing HCHO and TEA. Sens. Actuators B Chem. 2020, 321, 128461. [Google Scholar] [CrossRef]
- Kim, S.J.; Koh, H.-J.; Ren, C.E.; Kwon, O.; Maleski, K.; Cho, S.-Y.; Anasori, B.; Kim, C.-K.; Choi, Y.-K.; Kim, J.; et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018, 12, 986–993. [Google Scholar] [CrossRef]
- Anasori, B.; Shi, C.; Moon, E.J.; Xie, Y.; Voigt, C.A.; Kent, P.R.C.; May, S.J.; Billinge, S.J.L.; Barsoum, M.W.; Gogotsi, Y. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 2016, 1, 227–234. [Google Scholar] [CrossRef]
- Koh, H.-J.; Kim, S.J.; Maleski, K.; Cho, S.-Y.; Kim, Y.-J.; Ahn, C.W.; Gogotsi, Y.; Jung, H.-T. Enhanced selectivity of MXene gas sensors through metal ion intercalation: In situ X-ray diffraction study. ACS Sens. 2019, 4, 1365–1372. [Google Scholar] [CrossRef]
Materials | Concentration (ppm) | Response Value (Ra/Rg, Rg/Ra) or Response Rate [(ΔR/Rg) × 100%] | LoD | Response/Recovery Time (s) | Ref./Year |
---|---|---|---|---|---|
NiO/Ti3C2Tx | 50 | 6.13 | 10 ppm | 60/19 | [71]/2023 |
Ti3C2Tx/In2O3 | 30 | 63.8% | 2 ppm | 42/209 | [57]/2022 |
TiO2/Ti3C2Tx | 10 | 3.1% | 0.5 ppm | 33/277 | [22]/2019 |
Ti3C2Tx/WO3 | 1 | 22.3% | 1 ppm | 119/228 | [70]/2021 |
Ti3C2Tx/CuO | 5 | 46.7% | 5 ppm | 12/25 | [72]/2023 |
ZnO/Ti3C2Tx | 20 | 39.16% | 89.41 ppb | 92/104 | [58]/2023 |
In2O3/Ti3C2Tx | 5 | 60.6% | 5 ppm | 3/2 | [73]/2022 |
Ti3C2Tx/ZnO | 50 | 196% | 1 ppm | 119/307 | [74]/2023 |
Ti3C2Tx/TiO2 | 30 | 40.6% | 5 ppm | 10/5 | [64]/2022 |
Ti3C2Tx/SnO2 | 50 | 40% | 0.5 ppm | 36/44 | [68]/2021 |
Ti3C2Tx/SnO | 10 | 67% | 1 ppm | 61/119 | [75]/2022 |
Ti3C2Tx/TiO2/CuO | 100 | 56.9% | 10 ppm | 75/80 | [54]/2023 |
α-Fe2O3/Ti3C2Tx | 5 | 18.3% | 5 ppm | 2.5/2 | [76]/2022 |
Materials | Concentration (ppm) | Response Value (Ra/Rg, Rg/Ra) or Response Rate [(ΔR/Rg) × 100%] | LoD | Response/Recovery Time (s) | Ref./Year |
---|---|---|---|---|---|
PANI/Ti3C2Tx | 10 | 1.6 | 25 ppb | — | [79]/2020 |
PANI:PSS/Ti3C2Tx | 1 | 57% | 20 ppb | 276/388 | [80]/2023 |
PANI/Ti3C2Tx | 20 | 55.9% | 5 ppm | — | [82]/2023 |
PEDOT:PSS/N-Ti3C2Tx | 10 | 13% | 10 ppm | — | [96]/2022 |
PANI/Ti3C2Tx/TiO2 | 10 | 2.3 | 20 ppb | 266/342 | [24]/2023 |
Polyacrylamide/Ti3C2Tx | 200 | 4.7% | — | 12.7/14.6 | [97]/2020 |
PPy/MXene | 100 | 31.9% | 5 ppm | 38/383 | [98]/2022 |
PEDOT:PSS/Ti3C2Tx | 100 | 36.6% | 10 ppm | 116/40 | [94]/2020 |
Ti3C2Tx/PDDS | 0.5 | 2.2% | 500 ppb | — | [99]/2022 |
Materials | Concentration (ppm) | Response Value (Ra/Rg, Rg/Ra) or Response Rate [(ΔR/Rg) × 100%] | LoD | Response/Recovery Time (s) | Ref./Year |
---|---|---|---|---|---|
Ti3C2Tx@TiO2/MoS2 | 100 | 163.3% | 500 ppb | 117/88 | [30]/2022 |
Ti3C2Tx/SnS2 | 10 | 42.9% | 10 ppb | 161/80 | [56]/2023 |
Ti3C2Tx/rGO | 50 | 6.77% | 10 ppm | — | [19]/2020 |
Ti3C2Tx/GO/CuO/ZnO | 100 | 59.9% | 4.1 ppm | 26/25 | [25]/2023 |
Ti3C2Tx/MoS2 | 100 | 81.7% | 200 ppb | 3/— | [110]/2022 |
Ti3C2Tx/TiO2/graphene | 50 | 36.8% | 22.23 ppb | 19/29 | [113]/2024 |
SnS/Ti3C2Tx | 5 | 1.031 | 250 ppb | 7/— | [114]/2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, K.; Tian, X.; Yuan, S.; Feng, Q.; Wang, Y. Research Progress on Ammonia Sensors Based on Ti3C2Tx MXene at Room Temperature: A Review. Sensors 2024, 24, 4465. https://doi.org/10.3390/s24144465
Cheng K, Tian X, Yuan S, Feng Q, Wang Y. Research Progress on Ammonia Sensors Based on Ti3C2Tx MXene at Room Temperature: A Review. Sensors. 2024; 24(14):4465. https://doi.org/10.3390/s24144465
Chicago/Turabian StyleCheng, Kaixin, Xu Tian, Shaorui Yuan, Qiuyue Feng, and Yude Wang. 2024. "Research Progress on Ammonia Sensors Based on Ti3C2Tx MXene at Room Temperature: A Review" Sensors 24, no. 14: 4465. https://doi.org/10.3390/s24144465
APA StyleCheng, K., Tian, X., Yuan, S., Feng, Q., & Wang, Y. (2024). Research Progress on Ammonia Sensors Based on Ti3C2Tx MXene at Room Temperature: A Review. Sensors, 24(14), 4465. https://doi.org/10.3390/s24144465