Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring
Abstract
:1. Introduction
2. Instrumentation Aspect
2.1. Safety Regulations
2.2. Excitation and Measurement Pattern
2.3. Electrode Configuration
3. Image Reconstruction Algorithms
3.1. Classification of Algorithms
3.2. Difference Algorithms
3.2.1. Time Difference
3.2.2. Frequency Difference
3.3. Absolute Algorithm
3.4. Intelligent Algorithms
4. Applications
4.1. Ventilation Detection
4.2. Perfusion Detection
4.3. V/Q Mismatch
4.4. C-ARDS and NC-ARDS
4.5. Pneumothorax
4.6. Pulmonary Embolism
4.7. Pulmonary Edema
4.8. Prone Position
4.9. Lung Transplantation
4.10. Pulmonary Monitoring in Obese Patients
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Q.; Wang, J.; Li, X.; Duan, X.; Zhang, R.; Zhang, H.; Ma, Y.; Wang, H.; Jia, J. Exploring Respiratory Motion Tracking Through Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Frerichs, I.; Zhao, Z.; Dai, M.; Braun, F.; Proença, M.; Rapin, M.; Wacker, J.; Lemay, M.; Haris, K.; Petmezas, G.; et al. Respiratory Image Analysis. In Wearable Sensing and Intelligent Data Analysis for Respiratory Management; Elsevier: Amsterdam, The Netherlands, 2022; pp. 169–212. [Google Scholar] [CrossRef]
- Chen, X.; Lv, X.; Wang, H. Lung Carcinoma Recognition by Blood Dielectric Spectroscopy. Bio-Med. Mater. Eng. 2015, 26, S895–S901. [Google Scholar] [CrossRef]
- Henderson, R.P.; Webster, J.G. An Impedance Camera for Spatially Specific Measurements of the Thorax. IEEE Trans. Biomed. Eng. 1978, BME-25, 250–254. [Google Scholar] [CrossRef]
- Holmlund, P.; Lundström, R.; Lindberg, L. Mechanical Impedance of the Human Body in Vertical Direction. Appl. Ergon. 2000, 31, 415–422. [Google Scholar] [CrossRef]
- Aga, K.; Tarao, H.; Urushihara, S. Calculation of Human Body Resistance at Power Frequency Using Anatomic Numerical Human Model. Energy Procedia 2016, 89, 401–407. [Google Scholar] [CrossRef]
- Biegelmeier, G. New knowledge on the impedance of the human body. In Electrical Shock Safety Criteria; Elsevier: Amsterdam, The Netherlands, 1985; pp. 115–132. [Google Scholar] [CrossRef]
- De Santis, V.; Beeckman, P.A.; Lampasi, D.A.; Feliziani, M. Assessment of Human Body Impedance for Safety Requirements Against Contact Currents for Frequencies up to 110 MHz. IEEE Trans. Biomed. Eng. 2011, 58, 390–396. [Google Scholar] [CrossRef]
- Xu, Z.; Yao, J.; Wang, Z.; Liu, Y.; Wang, H.; Chen, B.; Wu, H. Development of a Portable Electrical Impedance Tomography System for Biomedical Applications. IEEE Sens. J. 2018, 18, 8117–8124. [Google Scholar] [CrossRef]
- Modi, D. IEC 601-1-2 and Its Impact on Medical Device Manufacturers. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. ‘Magnificent Milestones and Emerging Opportunities in Medical Engineering’ (Cat. No. 97CH36136), Chicago, IL, USA, 30 October–2 November 1997; Volume 6, pp. 2531–2534. [Google Scholar] [CrossRef]
- Bragos, R.; Rosell, J.; Riu, P. A Wide-Band AC-coupled Current Source for Electrical Impedance Tomography. Physiol. Meas. 1994, 15, A91. [Google Scholar] [CrossRef]
- Khalighi, M.; Mikaeili, M. A Floating Wide-Band Current Source for Electrical Impedance Tomography. Rev. Sci. Instrum. 2018, 89, 085107. [Google Scholar] [CrossRef]
- Hong, H.; Rahal, M.; Demosthenous, A.; Bayford, R.H. Comparison of a New Integrated Current Source with the Modified Howland Circuit for EIT Applications. Physiol. Meas. 2009, 30, 999–1007. [Google Scholar] [CrossRef]
- Ojarand, J.; Min, M.; Annus, P. Crest Factor Optimization of the Multisine Waveform for Bioimpedance Spectroscopy. Physiol. Meas. 2014, 35, 1019–1033. [Google Scholar] [CrossRef]
- Adler, A.; Holder, D. Electrical Impedance Tomography: Methods, History and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Becher, T.H.; Miedema, M.; Kallio, M.; Papadouri, T.; Karaoli, C.; Sophocleous, L.; Rahtu, M.; van Leuteren, R.W.; Waldmann, A.D.; Strodthoff, C.; et al. Prolonged Continuous Monitoring of Regional Lung Function in Infants with Respiratory Failure. Ann. Am. Thorac. Soc. 2022, 19, 991–999. [Google Scholar] [CrossRef]
- Sophocleous, L.; Frerichs, I.; Miedema, M.; Kallio, M.; Papadouri, T.; Karaoli, C.; Becher, T.; Tingay, D.G.; van Kaam, A.H.; Bayford, R.; et al. Clinical Performance of a Novel Textile Interface for Neonatal Chest Electrical Impedance Tomography. Physiol. Meas. 2018, 39, 044004. [Google Scholar] [CrossRef]
- Li, W.; Shi, H.; Zhang, L.; Zhang, X.; Zhang, F.; Yang, Y. Electrical Impedance Tomography: A Review on Hardware Systems and Circuits. Biomed. Phys. Eng. Express, 2023; online ahead of print. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, Y.; Wang, H. A Dual-modality Integrated Sensor for Electrical Capacitance Tomography and Electromagnetic Tomography. IEEE Sens. J. 2019, 19, 10016–10026. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, H.; Yang, W.; Yan, Y. A Calculable Sensor for Electrical Impedance Tomography. Sens. Actuators A Phys. 2007, 140, 156–161. [Google Scholar] [CrossRef]
- Leonhardt, S.; Lachmann, B. Electrical Impedance Tomography: The Holy Grail of Ventilation and Perfusion Monitoring? Intensive Care Med. 2012, 38, 1917–1929. [Google Scholar] [CrossRef]
- Avis, N.J.; Barber, D.C. Image Reconstruction Using Non-Adjacent Drive Configurations (Electric Impedance Tomography). Physiol. Meas. 1994, 15, A153–A160. [Google Scholar] [CrossRef]
- Bodenstein, M.; David, M.; Markstaller, K. Principles of Electrical Impedance Tomography and Its Clinical Application. Crit. Care Med. 2009, 37, 713–724. [Google Scholar] [CrossRef]
- Putensen, C.; Hentze, B.; Muenster, S.; Muders, T. Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. J. Clin. Med. 2019, 8, 1176. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Z.; Xiong, H.; Li, C.; Chen, Y. A New Current Injection and Voltage Measurement Strategy of 3D Electrical Impedance Tomography Based on Scanning Electrode. Rev. Sci. Instrum. 2022, 93, 094704. [Google Scholar] [CrossRef]
- Yang, L.; Wu, H.; Liu, K.; Chen, B.; Han, W.; Yao, J. Image Reconstruction Improvement with Optimal Driven-Measurement Pattern Selection for Electrical Impedance Tomography. IEEE Sens. J. 2021, 21, 13530–13539. [Google Scholar] [CrossRef]
- Adler, A.; Youmaran, R.; Lionheart, W.R.B. A Measure of the Information Content of EIT Data. Physiol. Meas. 2008, 29, S101. [Google Scholar] [CrossRef]
- Wheeler, J.L.; Wang, W.; Tang, M. A Comparison of Methods for Measurement of Spatial Resolution in Two-Dimensional Circular EIT Images. Physiol. Meas. 2002, 23, 169–176. [Google Scholar] [CrossRef]
- Hu, C.L.; Cheng, I.C.; Huang, C.H.; Liao, Y.T.; Lin, W.C.; Tsai, K.J.; Chi, C.H.; Chen, C.W.; Wu, C.H.; Lin, I.T.; et al. Dry Wearable Textile Electrodes for Portable Electrical Impedance Tomography. Sensors 2021, 21, 6789. [Google Scholar] [CrossRef]
- Lin, B.S.; Yu, H.R.; Kuo, Y.T.; Liu, Y.W.; Chen, H.Y.; Lin, B.S. Wearable Electrical Impedance Tomography Belt with Dry Electrodes. IEEE Trans. Biomed. Eng. 2022, 69, 955–962. [Google Scholar] [CrossRef]
- Brabant, O.A.; Byrne, D.P.; Sacks, M.; Moreno Martinez, F.; Raisis, A.L.; Araos, J.B.; Waldmann, A.D.; Schramel, J.P.; Ambrosio, A.; Hosgood, G.; et al. Thoracic Electrical Impedance Tomography—The 2022 Veterinary Consensus Statement. Front. Vet. Sci. 2022, 9, 946911. [Google Scholar] [CrossRef]
- Maciejewski, D.; Putowski, Z.; Czok, M.; Krzych, Ł.J. Electrical Impedance Tomography as a Tool for Monitoring Mechanical Ventilation. An Introduction to the Technique. Adv. Med Sci. 2021, 66, 388–395. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, T.F.; Teng, H.C.; Wang, Y.C.; Chang, M.Y.; Chang, H.T.; Frerichs, I.; Fu, F.; Möller, K. Is There a Need for Individualized Adjustment of Electrode Belt Position during EIT-guided Titration of Positive End-Expiratory Pressure? Physiol. Meas. 2022, 43, 064001. [Google Scholar] [CrossRef]
- Shi, Y.; Lou, Y.; Wang, M.; Tian, Z.; Yang, B.; Fu, F. A Mismatch Correction Method for Electrode Offset in Electrical Impedance Tomography. IEEE Sens. J. 2022, 22, 7248–7257. [Google Scholar] [CrossRef]
- Soleimani, M.; Gómez-Laberge, C.; Adler, A. Imaging of Conductivity Changes and Electrode Movement in EIT. Physiol. Meas. 2006, 27, S103–S113. [Google Scholar] [CrossRef]
- Lozano, A.; Rosell, J.; Pallas-Areny, R. Errors in Prolonged Electrical Impedance Measurements Due to Electrode Repositioning and Postural Changes. Physiol. Meas. 1995, 16, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Huang, W.; Gao, Z.; Yang, L.; Li, Y.; Lu, Y.; Dai, M.; Fu, F.; Sang, L.; Zhao, Z. The Influence of Reference Electrode in Electrical Impedance Tomography. Heliyon 2022, 8, e12454. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wan, X.; Dong, Z.; Zhang, Z.; Jia, J. Estimation of Reference Voltages for Time-Difference Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Frerichs, I.; Amato, M.B.P.; van Kaam, A.H.; Tingay, D.G.; Zhao, Z.; Grychtol, B.; Bodenstein, M.; Gagnon, H.; Böhm, S.H.; Teschner, E.; et al. Chest Electrical Impedance Tomography Examination, Data Analysis, Terminology, Clinical Use and Recommendations: Consensus Statement of the TRanslational EIT developmeNt study Group. Thorax 2017, 72, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.I.; Khambampati, A.K.; Jeon, M.H.; Kim, B.S.; Kim, K.Y. A Sub-Domain Based Regularization Method with Prior Information for Human Thorax Imaging Using Electrical Impedance Tomography. Meas. Sci. Technol. 2016, 27, 025703. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Q.; Xue, Q.; Fan, W.; Zhang, L.; Cao, Z.; Sun, B.; Wang, H.; Yang, W. A Review on Image Reconstruction Algorithms for Electrical Capacitance/Resistance Tomography. Sens. Rev. 2016, 36, 429–445. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, S.; Shi, Y.; Lou, Y. Hybrid Method for Improving Tikhonov-based Reconstruction Quality in Electrical Impedance Tomography. J. Med Imaging 2022, 9, 054503. [Google Scholar] [CrossRef]
- Shi, Y.; Lou, Y.; Wang, M.; Zheng, S.; Tian, Z.; Fu, F. Imaging of Conductivity Distribution Based on a Combined Reconstruction Method in Brain Electrical Impedance Tomography. Inverse Probl. Imaging 2023, 17, 542–561. [Google Scholar] [CrossRef]
- Wang, J. An Efficient One-Step Proximal Method for EIT Sparse Reconstruction Based on Nonstationary Iterated Tikhonov Regularization. Appl. Math. Sci. Eng. 2023, 31, 2157413. [Google Scholar] [CrossRef]
- Sun, B.; Yue, S.; Hao, Z.; Cui, Z.; Wang, H. An Improved Tikhonov Regularization Method for Lung Cancer Monitoring Using Electrical Impedance Tomography. IEEE Sens. J. 2019, 19, 3049–3057. [Google Scholar] [CrossRef]
- Hu, Q.; Xu, Y.; Liu, Z.; Li, C.; Dong, F. Multiple Weighted Frequency-difference Method for Electrical Impedance Tomography. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Jiang, Y.; Soleimani, M. Capacitively Coupled Resistivity Imaging for Biomaterial and Biomedical Applications. IEEE Access 2018, 6, 27069–27079. [Google Scholar] [CrossRef]
- Cao, L.; Li, H.; Xu, C.; Dai, M.; Ji, Z.; Shi, X.; Dong, X.; Fu, F.; Yang, B. A Novel Time-Difference Electrical Impedance Tomography Algorithm Using Multi-Frequency Information. BioMedical Eng. OnLine 2019, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Liu, D.; Wei, J.; Bai, X.; Sun, S.; Tian, W. Simultaneous Imaging of Bio- and Non-Conductive Targets by Combining Frequency and Time Difference Imaging Methods in Electrical Impedance Tomography. Biosensors 2021, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.J. EIT Imaging of Admittivities with a D-bar Method and Spatial Prior: Experimental Results for Absolute and Difference Imaging. Physiol. Meas. 2017, 38, 1176–1192. [Google Scholar] [CrossRef]
- Martins, T.d.C.; Sato, A.K.; de Moura, F.S.; de Camargo, E.D.L.B.; Silva, O.L.; Santos, T.B.R.; Zhao, Z.; Möeller, K.; Amato, M.B.P.; Mueller, J.L.; et al. A Review of Electrical Impedance Tomography in Lung Applications: Theory and Algorithms for Absolute Images. Annu. Rev. Control 2019, 48, 442–471. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.J.; Mueller, J.L.; Santos, T.R. Robust Computation in 2D Absolute EIT (a-EIT) Using D-bar Methods with the ‘Exp’ Approximation. Physiol. Meas. 2018, 39, 064005. [Google Scholar] [CrossRef]
- Hamilton, S.J.; Hauptmann, A. Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging with Deep Neural Networks. IEEE Trans. Med. Imaging 2018, 37, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.J.; Hänninen, A.; Hauptmann, A.; Kolehmainen, V. Beltrami-Net: Domain-Independent Deep D-bar Learning for Absolute Imaging with Electrical Impedance Tomography (a-EIT). Physiol. Meas. 2019, 40, 074002. [Google Scholar] [CrossRef]
- Hamilton, S.J.; Lionheart, W.R.B.; Adler, A. Comparing D-bar and Common Regularization-Based Methods for Electrical Impedance Tomography. Physiol. Meas. 2019, 40, 044004. [Google Scholar] [CrossRef]
- Khan, T.A.; Ling, S.H. Review on Electrical Impedance Tomography: Artificial Intelligence Methods and Its Applications. Algorithms 2019, 12, 88. [Google Scholar] [CrossRef]
- Tan, C.; Lv, S.; Dong, F.; Takei, M. Image Reconstruction Based on Convolutional Neural Network for Electrical Resistance Tomography. IEEE Sens. J. 2019, 19, 196–204. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, D.; Chen, X. Dominant-Current Deep Learning Scheme for Electrical Impedance Tomography. IEEE Trans. Biomed. Eng. 2019, 66, 2546–2555. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, B.; Liu, K.; Zhu, C.; Pan, H.; Jia, J.; Wu, H.; Yao, J. Shape Reconstruction with Multiphase Conductivity for Electrical Impedance Tomography Using Improved Convolutional Neural Network Method. IEEE Sens. J. 2021, 21, 9277–9287. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Fu, R.; Wang, D.; Chen, X.; Guo, X.; Wang, H. V-Shaped Dense Denoising Convolutional Neural Network for Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Wang, Q.; Duan, X.; Sun, Y.; Wang, J. SAR-CGAN: Improved Generative Adversarial Network for EIT Reconstruction of Lung Diseases. Biomed. Signal Process. Control 2023, 81, 104421. [Google Scholar] [CrossRef]
- Strodthoff, N.; Strodthoff, C.; Becher, T.; Weiler, N.; Frerichs, I. Inferring Respiratory and Circulatory Parameters from Electrical Impedance Tomography with Deep Recurrent Models. IEEE J. Biomed. Health Inform. 2021, 25, 3105–3111. [Google Scholar] [CrossRef] [PubMed]
- Crivellari, B.; Raisis, A.; Hosgood, G.; Waldmann, A.D.; Murphy, D.; Mosing, M. Use of Electrical Impedance Tomography (EIT) to Estimate Tidal Volume in Anaesthetized Horses Undergoing Elective Surgery. Animals 2021, 11, 1350. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Z.; Choi, H.Y.; Choi, Y.S.; Kim, C.Y.; Lee, Y.J.; Chung, S.H. Surfactant Treatment Shows Higher Correlation Between Ventilator and EIT Tidal Volumes in an RDS Animal Model. Front. Physiol. 2022, 13, 814320. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, N.; Wierzbicka, M.; Jasiński, T.; Domino, M. Advances in the Diagnosis of Equine Respiratory Diseases: A Review of Novel Imaging and Functional Techniques. Animals 2022, 12, 381. [Google Scholar] [CrossRef]
- Mosing, M.; Waldmann, A.D.; Raisis, A.; Böhm, S.H.; Drynan, E.; Wilson, K. Monitoring of Tidal Ventilation by Electrical Impedance Tomography in Anaesthetised Horses. Equine Vet. J. 2019, 51, 222–226. [Google Scholar] [CrossRef]
- Frerichs, I.; Pulletz, S.; Elke, G.; Reifferscheid, F.; Schädler, D.; Scholz, J.; Weiler, N. Assessment of Changes in Distribution of Lung Perfusion by Electrical Impedance Tomography. Respiration 2009, 77, 282–291. [Google Scholar] [CrossRef]
- Safaee Fakhr, B.; Araujo Morais, C.C.; De Santis Santiago, R.R.; Di Fenza, R.; Gibson, L.E.; Restrepo, P.A.; Chang, M.G.; Bittner, E.A.; Pinciroli, R.; Fintelmann, F.J.; et al. Bedside Monitoring of Lung Perfusion by Electrical Impedance Tomography in the Time of COVID-19. Br. J. Anaesth. 2020, 125, e434–e436. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; He, H.; Long, Y. Lung Perfusion Assessment by Bedside Electrical Impedance Tomography in Critically Ill Patients. Front. Physiol. 2021, 12, 748724. [Google Scholar] [CrossRef] [PubMed]
- Frerichs, I.; Hinz, J.; Herrmann, P.; Weisser, G.; Hahn, G.; Quintel, M.; Hellige, G. Regional Lung Perfusion as Determined by Electrical Impedance Tomography in Comparison with Electron Beam CT Imaging. IEEE Trans. Med. Imaging 2002, 21, 646–652. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Chi, Y.; Long, Y.; Yuan, S.; Zhang, R.; Yang, Y.; Frerichs, I.; Möller, K.; Fu, F.; Zhao, Z. Three Broad Classifications of Acute Respiratory Failure Etiologies Based on Regional Ventilation and Perfusion by Electrical Impedance Tomography: A Hypothesis-Generating Study. Ann. Intensive Care 2021, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Kircher, M.; Elke, G.; Stender, B.; Hernandez Mesa, M.; Schuderer, F.; Dossel, O.; Fuld, M.K.; Halaweish, A.F.; Hoffman, E.A.; Weiler, N.; et al. Regional Lung Perfusion Analysis in Experimental ARDS by Electrical Impedance and Computed Tomography. IEEE Trans. Med. Imaging 2021, 40, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Jin, C.; Thiagalingam, A.; McEwan, A.L. A Review on Electrical Impedance Tomography for Pulmonary Perfusion Imaging. Physiol. Meas. 2012, 33, 695–706. [Google Scholar] [CrossRef]
- Slobod, D.; Damia, A.; Leali, M.; Spinelli, E.; Mauri, T. Pathophysiology and Clinical Meaning of Ventilation-Perfusion Mismatch in the Acute Respiratory Distress Syndrome. Biology 2022, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Somhorst, P.; Gommers, D.; Endeman, H. Advanced Respiratory Monitoring in Mechanically Ventilated Patients with Coronavirus Disease 2019-Associated Acute Respiratory Distress Syndrome. Curr. Opin. Crit. Care 2022, 28, 66–73. [Google Scholar] [CrossRef]
- Tingay, D.G.; Waldmann, A.D.; Frerichs, I.; Ranganathan, S.; Adler, A. Electrical Impedance Tomography Can Identify Ventilation and Perfusion Defects: A Neonatal Case. Am. J. Respir. Crit. Care Med. 2019, 199, 384–386. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Thiagalingam, A.; Bhaskaran, A.; Barry, M.A.; Pouliopoulos, J.; Jin, C.; McEwan, A.L. Electrical Impedance Tomography for Assessing Ventilation/Perfusion Mismatch for Pulmonary Embolism Detection without Interruptions in Respiration. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 6068–6071. [Google Scholar] [CrossRef]
- Spinelli, E.; Kircher, M.; Stender, B.; Ottaviani, I.; Basile, M.C.; Marongiu, I.; Colussi, G.; Grasselli, G.; Pesenti, A.; Mauri, T. Unmatched Ventilation and Perfusion Measured by Electrical Impedance Tomography Predicts the Outcome of ARDS. Crit. Care 2021, 25, 192. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.C.; Morais, C.; Bugedo, G.; Bruhn, A.; Morales, A.; Borges, J.B.; Costa, E.; Retamal, J. Electrical Impedance Tomography in Acute Respiratory Distress Syndrome. Crit. Care 2018, 22, 263. [Google Scholar] [CrossRef]
- Inany, H.S.; Rettig, J.S.; Smallwood, C.D.; Arnold, J.H.; Walsh, B.K. Distribution of Ventilation Measured by Electrical Impedance Tomography in Critically Ill Children. Respir. Care 2020, 65, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, M.; Giani, M.; Bronco, A.; Lembo, F.M.; Rona, R.; Bellani, G.; Foti, G. Bedside Selection of Positive End Expiratory Pressure by Electrical Impedance Tomography in Patients Undergoing Veno-Venous Extracorporeal Membrane Oxygenation Support: A Comparison between COVID-19 ARDS and ARDS from Other Etiologies. J. Clin. Med. 2022, 11, 1639. [Google Scholar] [CrossRef]
- Perier, F.; Tuffet, S.; Maraffi, T.; Alcala, G.; Victor, M.; Haudebourg, A.F.; Razazi, K.; De Prost, N.; Amato, M.; Carteaux, G.; et al. Electrical Impedance Tomography to Titrate Positive End-Expiratory Pressure in COVID-19 Acute Respiratory Distress Syndrome. Crit. Care 2020, 24, 678. [Google Scholar] [CrossRef] [PubMed]
- Briel, M.; Meade, M.; Mercat, A.; Brower, R.G.; Talmor, D.; Walter, S.D.; Slutsky, A.S.; Pullenayegum, E.; Zhou, Q.; Cook, D.; et al. Higher vs Lower Positive End-Expiratory Pressure in Patients with Acute Lung Injury and Acute Respiratory Distress Syndrome: Systematic Review and Meta-analysis. JAMA 2010, 303, 865. [Google Scholar] [CrossRef] [PubMed]
- Cambiaghi, B.; Moerer, O.; Kunze-Szikszay, N.; Mauri, T.; Just, A.; Dittmar, J.; Hahn, G. A Spiky Pattern in the Course of Electrical Thoracic Impedance as a Very Early Sign of a Developing Pneumothorax. Clin. Physiol. Funct. Imaging 2018, 38, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Kallio, M.; Rahtu, M.; Kaam, A.H.; Bayford, R.; Rimensberger, P.C.; Frerichs, I. Electrical Impedance Tomography Reveals Pathophysiology of Neonatal Pneumothorax during NAVA. Clin. Case Rep. 2020, 8, 1574–1578. [Google Scholar] [CrossRef]
- Miedema, M.; Adler, A.; McCall, K.E.; Perkins, E.J.; van Kaam, A.H.; Tingay, D.G. Electrical Impedance Tomography Identifies a Distinct Change in Regional Phase Angle Delay Pattern in Ventilation Filling Immediately Prior to a Spontaneous Pneumothorax. J. Appl. Physiol. 2019, 127, 707–712. [Google Scholar] [CrossRef]
- Yang, Y.; He, H.; Long, Y.; Chi, Y.; Yuan, S.; Shen, Z.; Frerichs, I.; Zhao, Z. Bedside Electrical Impedance Tomography in Early Diagnosis of Pneumothorax in Mechanically Ventilated ICU Patients—A Single-Center Retrospective Cohort Study. J. Clin. Monit. Comput. 2022, 37, 629–637. [Google Scholar] [CrossRef]
- Girrbach, F.; Landeck, T.; Schneider, D.; Reske, S.U.; Hempel, G.; Hammermüller, S.; Gottschaldt, U.; Salz, P.; Noreikat, K.; Stehr, S.N.; et al. Detection of Posttraumatic Pneumothorax Using Electrical Impedance Tomography—An Observer-Blinded Study in Pigs with Blunt Chest Trauma. PLoS ONE 2020, 15, e0227518. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Minh, D.; Duong Trong, L.; McEwan, A. An Efficient and Fast Multi-Band Focused Bioimpedance Solution with EIT-based Reconstruction for Pulmonary Embolism Assessment: A Simulation Study from Massive to Segmental Blockage. Physiol. Meas. 2022, 43, 025003. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Bhaskaran, A.; Chik, W.; Barry, M.A.; Pouliopoulos, J.; Kosobrodov, R.; Jin, C.; Oh, T.I.; Thiagalingam, A.; McEwan, A.L. Perfusion Redistribution after a Pulmonary-Embolism-like Event with Contrast Enhanced EIT. Physiol. Meas. 2015, 36, 1297–1309. [Google Scholar] [CrossRef]
- Prins, S.A.; Weller, D.; Labout, J.A.M.; den Uil, C.A. Electrical Impedance Tomography as a Bedside Diagnostic Tool for Pulmonary Embolism. Crit. Care Explor. 2023, 5, e0843. [Google Scholar] [CrossRef]
- Sobota, V.; Suchomel, J. Monitoring of Pulmonary Embolism Using Electrical Impedance Tomography: A Case Study. In Proceedings of the 2013 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Yuan, S.; He, H.; Long, Y.; Chi, Y.; Frerichs, I.; Zhao, Z. Rapid Dynamic Bedside Assessment of Pulmonary Perfusion Defect by Electrical Impedance Tomography in a Patient with Acute Massive Pulmonary Embolism. Pulm. Circ. 2021, 11, 1–3. [Google Scholar] [CrossRef]
- Kuk, W.J.; Wright, N.R. Bedside Diagnosis of Pulmonary Embolism Using Electrical Impedance Tomography: A Case Report. A&A Pract. 2022, 16, e01606. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, H.; Cui, N. The Role of Electrical Impedance Tomography for Management of High-Risk Pulmonary Embolism in a Postoperative Patient. Front. Med. 2021, 8, 773471. [Google Scholar] [CrossRef] [PubMed]
- Kunst, P.W.; Noordegraaf, A.V.; Raaijmakers, E.; Bakker, J.; Groeneveld, A.J.; Postmus, P.E.; De Vries, P.M. Electrical Impedance Tomography in the Assessment of Extravascular Lung Water in Noncardiogenic Acute Respiratory Failure. Chest 1999, 116, 1695–1702. [Google Scholar] [CrossRef]
- Arad, M.; Abboud, S. Electrical Impedance Tomography vs. Whole Thoracic Impedance for Monitoring Lung Fluid Content in Congestive Heart Failure Patients. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013; pp. 465–466. [Google Scholar]
- Trepte, C.J.C.; Phillips, C.R.; Solà, J.; Adler, A.; Haas, S.A.; Rapin, M.; Böhm, S.H.; Reuter, D.A. Electrical Impedance Tomography (EIT) for Quantification of Pulmonary Edema in Acute Lung Injury. Crit. Care 2016, 20, 18. [Google Scholar] [CrossRef]
- Perier, F.; Tuffet, S.; Maraffi, T.; Alcala, G.; Victor, M.; Haudebourg, A.F.; De Prost, N.; Amato, M.; Carteaux, G.; Mekontso Dessap, A. Effect of Positive End-Expiratory Pressure and Proning on Ventilation and Perfusion in COVID-19 Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2020, 202, 1713–1717. [Google Scholar] [CrossRef]
- Fossali, T.; Pavlovsky, B.; Ottolina, D.; Colombo, R.; Basile, M.C.; Castelli, A.; Rech, R.; Borghi, B.; Ianniello, A.; Flor, N.; et al. Effects of Prone Position on Lung Recruitment and Ventilation-Perfusion Matching in Patients with COVID-19 Acute Respiratory Distress Syndrome: A Combined CT Scan/Electrical Impedance Tomography Study. Crit. Care Med. 2022, 50, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Pierrakos, C.; van der Ven, F.L.I.M.; Smit, M.R.; Hagens, L.A.; Paulus, F.; Schultz, M.J.; Bos, L.D.J. Prone Positioning Decreases Inhomogeneity and Improves Dorsal Compliance in Invasively Ventilated Spontaneously Breathing COVID-19 Patients—A Study Using Electrical Impedance Tomography. Diagnostics 2022, 12, 2281. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.x.; Zhong, M.; Dong, M.h.; Song, J.q.; Zheng, Y.j.; Wu, W.; Tao, J.l.; Zhu, L.; Zheng, X. Prone Positioning Improves Ventilation–Perfusion Matching Assessed by Electrical Impedance Tomography in Patients with ARDS: A Prospective Physiological Study. Crit. Care 2022, 26, 154. [Google Scholar] [CrossRef] [PubMed]
- Son, E.; Jang, J.; Cho, W.H.; Kim, D.; Yeo, H.J. Successful Lung Transplantation after Prone Positioning in an Ineligible Donor: A Case Report. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 1352–1355. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, H.; Jossinet, J. Bioelectrical Spectroscopy from Multi-Frequency EIT. Physiol. Meas. 1994, 15, A59–A63. [Google Scholar] [CrossRef] [PubMed]
- Edd, J.; Rubinsky, B. Assessment of the Viability of Transplant Organs with 3D Electrical Impedance Tomography. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 2644–2647. [Google Scholar] [CrossRef]
- Jiang, H.; Han, Y.; Zheng, X.; Fang, Q. Roles of Electrical Impedance Tomography in Lung Transplantation. Front. Physiol. 2022, 13, 986422. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, K.; Mohammed, H.; Hopkins, P.; Corley, A.; Caruana, L.; Dunster, K.; Barnett, A.G.; Fraser, J.F. Single-Lung Transplant Results in Position Dependent Changes in Regional Ventilation: An Observational Case Series Using Electrical Impedance Tomography. Can. Respir. J. 2016, 2016, 2471207. [Google Scholar] [CrossRef]
- Grassi, L.G.; Santiago, R.; Florio, G.; Berra, L. Bedside Evaluation of Pulmonary Embolism by Electrical Impedance Tomography. Anesthesiology 2020, 132, 896. [Google Scholar] [CrossRef] [PubMed]
- Kacmarek, R.M.; Wanderley, H.V.; Villar, J.; Berra, L. Weaning Patients with Obesity from Ventilatory Support. Curr. Opin. Crit. Care 2021, 27, 311–319. [Google Scholar] [CrossRef]
- Fulton, R.; Millar, J.E.; Merza, M.; Johnston, H.; Corley, A.; Faulke, D.; Rapchuk, I.; Tarpey, J.; Lockie, P.; Lockie, S.; et al. High Flow Nasal Oxygen after Bariatric Surgery (OXYBAR), Prophylactic Post-Operative High Flow Nasal Oxygen versus Conventional Oxygen Therapy in Obese Patients Undergoing Bariatric Surgery: Study Protocol for a Randomised Controlled Pilot Trial. Trials 2018, 19, 402. [Google Scholar] [CrossRef]
- Tipre, D.N.; Cidon, M.; Moats, R.A. Imaging Pulmonary Blood Vessels and Ventilation-Perfusion Mismatch in COVID-19. Mol. Imaging Biol. 2022, 24, 526–536. [Google Scholar] [CrossRef] [PubMed]
Work | Electrode Array | Electrode Placement |
---|---|---|
Sophocleous et al. [17] | 32-electrode textile belt | 5–6th intercostal space |
Hu et al. [29] | 16-electrode textile belt | lower edge of breasts |
Lin et al. [30] | 32-electrode wireless belt | near the sixth rib |
Zhao et al. [33] | 16-electrode belt | 5th intercostal space |
Work | Algorithm | Result & Performance | Finding |
---|---|---|---|
Kang et al. [40] | A sub-domain based regularization method | IE (0.0444) CC (0.9392) | Regularization parameter with different weights performs better than constant weights. |
Wang et al. [42] | A hybrid iterative optimization method | BR (0.1288) SSIM (0.9661) (without noise) | An efficient alternating minimization algorithm is introduced and image reconstruction quality in EIT is improved. |
Wang [44] | A one-step proximal sparsity-promoting | RE (3.69) CC (0.9809) (Noise = 3%) | A reference approximation can be generated by NITR method as the starting value for the next sparsity-promoting step. |
Sun et al. [45] | An I-TR method | RE (0.0786) CC (0.8972) | It can reflect the shape and the metastasis process of cancerous tissue more clearly. |
Algorithm | Advantage | Drawback |
---|---|---|
Time-difference | (1) Good real-time performance. (2) Sensitivity to high-frequency signals. (3) The algorithm is relatively simple. | (1) Relatively low resolution. (2) Affected by signal-to-noise ratio. |
Frequency-difference | (1) High resolution. (2) Sensitivity to low-frequency signals. | (1) High algorithm complexity. (2) Poor real-time performance. (3) Sensitivity to high-frequency noise. |
Work | Algorithm | Result & Performance | Finding |
---|---|---|---|
Hu et al. [46] | MWFD and EMWFD method | The detection of background obtains good performance. | When there are multiple backgrounds in the measured field, the imaging quality is relatively low. |
Jiang and Soleimani [47] | An algorithm combining Tikhonov regularization and SIRT | Acceptable frequency-difference images can be obtained after calibration. | Background calibration requires both the background measurements and the anomaly measurements. |
Cao et al. [48] | A proposed spectral constraints algorithm (SC) | Parameters (IN, SD, and PE) are reduced. | SC has stronger noise suppression and target identification abilities. |
Bai et al. [49] | Combining td- and fd- method | Tackle with the scenarios where both bio- and non-conductive inclusions exist. | A wavelet-based fusion strategy is proposed to fuse the imaging results. |
Work | Algorithm | Result and Performance | Finding |
---|---|---|---|
Tan et al. [57] | CNN-based method | ICC (0.95) (without noise) | It has good generalization ability. |
Wei et al. [58] | CNN-based inversion method (BE-SOM and DC-DLS) | Significant performance improvements while reconstructing targets with sharp corners or edges. | Be able to reconstruct triangular and rectangular inclusions and easily expand it to 3D. |
Wu et al. [59] | Improved CNN method | RMSE (0.082) ICC (0.892) | It achieves high-resolution and robust shape reconstructions. |
Zhang et al. [60] | VDD-Net | RE (0.140) SSIM (0.961) | Combining sensitivity theory and deep CNN model can better express the nonlinear relationship between the measurements and the parameters in the observation domain. |
Detection | Measurement Objective | Input Signal | Clinical Application |
---|---|---|---|
Ventilation | The opening and blockage of gas channels | low-frequency AC current | Ventilation management/respiratory monitoring/lung function assessment |
Perfusion | The distribution of blood in pulmonary vessels | AC or pulse current sources of different frequencies | Pulmonary vascular function assessment/regional perfusion detection/interventions guidance |
ARDS | The changes in V/Q patterns | AC current | Ventilation strategies guidance/lung recruitment assessment/progress monitoring of ARDS |
PTX | The accumulation of air in the pleural space | low-frequency AC current | Diagnosis/monitoring/interventions guidance of PTX |
PE | The regions of altered blood flow caused by PE | AC or pulse current sources of different frequencies | Pulmonary vascular function assessment/interventions guidance of PE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Liu, X.; Qu, H.; Wang, H. Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring. Sensors 2024, 24, 4539. https://doi.org/10.3390/s24144539
Cui Z, Liu X, Qu H, Wang H. Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring. Sensors. 2024; 24(14):4539. https://doi.org/10.3390/s24144539
Chicago/Turabian StyleCui, Ziqiang, Xinyan Liu, Hantao Qu, and Huaxiang Wang. 2024. "Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring" Sensors 24, no. 14: 4539. https://doi.org/10.3390/s24144539
APA StyleCui, Z., Liu, X., Qu, H., & Wang, H. (2024). Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring. Sensors, 24(14), 4539. https://doi.org/10.3390/s24144539