A Novel Approach to Detect Drones Using Deep Convolutional Neural Network Architecture
Abstract
:1. Introduction
2. Literature Review
3. Dataset Preparation
4. Proposed Algorithm
5. Experimental Results
5.1. Proposed Feature Extraction Network with Different Optimizers
5.2. State-of-the-Art Feature Extraction Models vs. Proposed Model
5.3. Anchor Boxes Estimation
5.4. Modified YOLOv2 Network with Different Optimizers
5.5. State-of-the-Art Feature Extraction Models with YOLOv2 vs. Proposed Feature Extraction Model with Modified YOLOv2
5.5.1. Resnet18 + YOLOv2
5.5.2. Resnet50 + YOLOv2
5.5.3. Darknet53 + YOLOv2
5.5.4. Darknet53 + YOLOv3
5.5.5. Proposed + Modified YOLOv2
6. Performance Evaluations
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benarbia, T.; Kyamakya, K. A Literature Review of Drone-Based Package Delivery Logistics Systems and Their Implementation Feasibility. Sustainability 2022, 14, 360. [Google Scholar] [CrossRef]
- Kshirsagar, S.P.; Jagyasi, N. Evolution and Technological Advancements in Drone Photography. Int. J. Creat. Res. Thoughts—IJCRT 2020, 8, 2224–2227. [Google Scholar]
- Samadzadegan, F.; Javan, F.D.; Mahini, F.A.; Gholamshahi, M. Detection and Recognition of Drones Based on a Deep Convolutional Neural Network Using Visible Imagery. Aerospace 2022, 9, 31. [Google Scholar] [CrossRef]
- Touil, S.; Richa, A.; Fizir, M.; Argente Garcia, J.E.; Skarmeta Gomez, A.F. A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrig. Drain. 2022, 71, 1396–1416. [Google Scholar] [CrossRef]
- Sai, P.V.; Narasayya, N.L.; Kiran, N.G.; Sekhar, A.C.; Krishna, C.N. Design and Fabrication of Agri Copter for Spraying Pesticides. Int. J. Sci. Eng. Res. 2020, 11. [Google Scholar]
- Al Shamsi, M.; Al Shamsi, M.; Al Dhaheri, R.; Al Shamsi, R.; Al Kaabi, S.; Al Younes, Y. Foggy Drone: Application to a Hexarotor UAV. In Proceedings of the International Conferences on Advances in Science and Engineering Technology, Abu Dhabi, United Arab Emirates, 6 February–5 April 2018; pp. 485–489. [Google Scholar] [CrossRef]
- Mohammed, F.; Idries, A.; Mohamed, N.; Al-Jaroodi, J.; Jawhar, I. UAVs for Smart Cities: Opportunities and Challenges. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014. [Google Scholar]
- Wisniewski, M.; Rana, Z.A.; Petrunin, I. Drone Model Classification Using Convolutional Neural Network Trained on Synthetic Data. J. Imaging 2022, 8, 218. [Google Scholar] [CrossRef] [PubMed]
- Chamola, V.; Kotesh, P.; Agarwal, A.; Gupta, N.; Guizani, M. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques. Ad Hoc Netw. 2021, 111, 102324. [Google Scholar] [CrossRef]
- Turkmen, Z.; Kuloglu, M. A New Era for Drug Trafficking: Drones. Forensic Sci. Addict. Res. 2018, 2, 114–118. [Google Scholar] [CrossRef]
- Ganti, S.R.; Kim, Y. Implementation of detection and tracking mechanism for small UAS. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA USA, 7–10 June 2016; pp. 1254–1260. [Google Scholar]
- Yang, J.; Gu, H.; Hu, C.; Zhang, X.; Gui, G.; Gacanin, H. Deep Complex-Valued Convolutional Neural Network for Drone Recognition Based on RF Fingerprinting. Drones 2022, 6, 374. [Google Scholar] [CrossRef]
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the Computer Vision and Pattern Recognition, CVPR 2005. IEEE Computer Society, San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Erabati, G.K.; Gonçalves, N.; Araújo, H. Object Detection in Traffic Scenarios—A Comparison of Traditional and Deep Learning Approaches; CS & IT—CSCP 2020; Institute of Systems and Robotics, University of Coimbra: Coimbra, Portugal, 2020; pp. 225–237. [Google Scholar] [CrossRef]
- Lim, J.-J.; Kim, D.-W.; Hong, W.-H.; Kim, M.; Lee, D.-H.; Kim, S.-Y.; Jeong, J.-H. Application of Convolutional Neural Network (CNN) to Recognize Ship Structures. Sensors 2022, 22, 3824. [Google Scholar] [CrossRef] [PubMed]
- Sahu, M.; Dash, R. A Survey on Deep Learning: Convolution Neural Network (CNN). In Intelligent and Cloud Computing; Smart Innovation, Systems and Technologies 153; Springer: Berlin/Heidelberg, Germany, 2021; pp. 317–325. [Google Scholar] [CrossRef]
- Thalagala, S.; Walgampaya, C. Application of AlexNet convolutional neural network architecture-based transfer learning for automated recognition of casting surface defects. In Proceedings of the International Research Conference on Smart Computing and Systems Engineering (SCSE), Colombo, Sri Lanka, 16 September 2021. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.155. [Google Scholar] [CrossRef]
- Sudha, V.; Ganeshbabu, T.R. A Convolutional Neural Network Classifier VGG-19 Architecture for Lesion Detection and Grading in Diabetic Retinopathy Based on Deep Learning. Comput. Mater. Contin. 2020, 66, 827–842. [Google Scholar] [CrossRef]
- Salavati, P.; Mohammadi, H.M. Obstacle Detection Using GoogleNet. In Proceedings of the 8th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 25–26 October 2018. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767v1. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Neural Inf. Process. Syst. 2015, 39, 91–99. Available online: https://arxiv.org/pdf/1506.01497.pdf (accessed on 22 May 2024). [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once:Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; Available online: https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html (accessed on 30 July 2023).
- Redmon, J.; Farhadi, A. Yolo9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; Available online: https://openaccess.thecvf.com/content_cvpr_2017/html/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.html (accessed on 22 May 2024).
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. Available online: https://arxiv.org/abs/1512.02325 (accessed on 22 May 2024).
- Dadrass Javan, F.; Samadzadegan, F.; Gholamshahi, M.; Ashatari Mahini, F. A Modified YOLOv4 Deep Learning Network for Vision-Based UAV Recognition. Drones 2022, 6, 160. [Google Scholar] [CrossRef]
- Svanströma, F.; Alonso-Fernandez, F.; Englund, C. A dataset for multi-sensor drone detection. Data Brief 2021, 39, 107521. [Google Scholar] [CrossRef]
- USC Drone Dataset. Available online: https://chelicynly.github.io/Drone-Project (accessed on 22 May 2024).
- Dawson, H.L.; Dubrule, O.; John, C.M. Impact of dataset size and convolutional neural network architecture on transfer learning for carbonate rock classification. Comput. Geosci. 2023, 171, 105284. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Yin, W. An Improved Analysis of Stochastic Gradient Descent with Momentum. In Proceedings of the Conf. Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 6–12 December 2020; pp. 1–11. [Google Scholar]
- Chen, Y.; Aggarwal, P.; Choi, J.; Kuo, J.C.-C. A Deep Learning Approach to Drone Monitoring. arXiv 2017, arXiv:1712.00863. [Google Scholar]
- Wang, Z.; Liu, J. A Review of Object Detection Based on Convolutional Neural Network. In Proceedings of the 36th Chinese Control Conference, Dalian, China, 26–28 July 2017. [Google Scholar]
- Xiao, Y.; Tian, Z.; Yu, J.; Zhang, Y.; Liu, S.; Du, S.; Lan, X. A review of object detection based on deep learning. Multimed. Tools Appl. 2020, 79, 23729–23791. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn.Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed]
Epoch | Iteration | Elapsed Time (hh:mm:ss) | Mini-Batch Accuracy | Validation Accuracy | Mini-Batch Loss | Validation Loss | Base Learning Rate |
---|---|---|---|---|---|---|---|
1 | 1 | 00:00:15 | 5.00% | 25.97% | 2.7688 | 4.2363 | 0.0100 |
1 | 50 | 00:01:20 | 75.00% | 61.53% | 0.5686 | 1.3813 | 0.0100 |
2 | 100 | 00:02:26 | 95.00% | 76.53% | 0.1081 | 1.3301 | 0.0100 |
2 | 150 | 00:03:33 | 95.00% | 73.47% | 0.3317 | 1.1884 | 0.0100 |
3 | 200 | 00:04:42 | 100.00% | 74.17% | 0.04370 | 1.4640 | 0.0100 |
3 | 250 | 00:05:50 | 100.00% | 86.53% | 0.05330 | 1.2644 | 0.0100 |
4 | 300 | 00:06:58 | 95.00% | 67.92% | 0.1578 | 2.3191 | 0.0100 |
5 | 350 | 00:08:05 | 100.00% | 80.28% | 0.0177 | 1.1865 | 0.0100 |
5 | 400 | 00:09:12 | 100.00% | 81.94% | 0.0088 | 1.2314 | 0.0100 |
6 | 450 | 00:10:20 | 100.00% | 86.39% | 0.0029 | 1.1369 | 0.0100 |
6 | 500 | 00:11:27 | 100.00% | 86.39% | 0.0029 | 1.1369 | 0.0100 |
7 | 550 | 00:12:36 | 75.00% | 79.31% | 0.7070 | 1.5656 | 0.0100 |
8 | 600 | 00:13:43 | 100.00% | 85.14% | 0.0539 | 1.3672 | 0.0100 |
8 | 650 | 00:14:49 | 90.00% | 85.56% | 0.3977 | 1.0454 | 0.0100 |
9 | 700 | 00:15:24 | 100.00% | 87.64% | 0.0427 | 1.0036 | 0.0100 |
9 | 750 | 00:15:53 | 95.00% | 90.83% | 0.0540 | 0.9987 | 0.0100 |
10 | 800 | 00:16:21 | 100.00% | 85.14% | 0.0176 | 2.0756 | 0.0100 |
10 | 840 | 00:16:45 | 100.00% | 85.14% | 0.0069 | 1.6661 | 0.0100 |
Epoch | Iteration | Elapsed Time (hh:mm:ss) | Mini- Batch Accuracy | Validation Accuracy | Mini-Batch Loss | Validation Loss | Base Learning Rate |
---|---|---|---|---|---|---|---|
1 | 1 | 00:00:09 | 0.00% | 23.97% | 2.7197 | 2.4006 | 0.0100 |
1 | 50 | 00:00:46 | 100.00% | 93.19% | 0.0028 | 0.1610 | 0.0100 |
2 | 100 | 00:01:23 | 100.00% | 94.72% | 0.0017 | 0.1380 | 0.0100 |
2 | 150 | 00:02:02 | 100.00% | 93.19% | 0.0096 | 0.2071 | 0.0100 |
3 | 200 | 00:02:39 | 100.00% | 95.97% | 0.0054 | 0.0916 | 0.0100 |
3 | 250 | 00:03:17 | 100.00% | 95.97% | 0.0011 | 0.0932 | 0.0100 |
4 | 300 | 00:04:07 | 100.00% | 96.11% | 0.0004 | 0.0998 | 0.0100 |
5 | 350 | 00:05:08 | 100.00% | 95.28% | 0.0016 | 0.0908 | 0.0100 |
5 | 400 | 00:06:09 | 100.00% | 96.11% | 0.0002 | 0.1004 | 0.0100 |
6 | 450 | 00:07:11 | 100.00% | 95.28% | 0.0004 | 0.1023 | 0.0100 |
6 | 500 | 00:08:14 | 100.00% | 95.69% | 0.0003 | 0.1136 | 0.0100 |
7 | 550 | 00:09:17 | 100.00% | 95.42% | 0.0014 | 0.1045 | 0.0100 |
8 | 600 | 00:10:19 | 100.00% | 96.11% | 0.0001 | 0.1116 | 0.0100 |
8 | 650 | 00:11:24 | 90.00% | 94.72% | 0.0006 | 0.1101 | 0.0100 |
9 | 700 | 00:12:27 | 100.00% | 94.86% | 0.0001 | 0.1153 | 0.0100 |
9 | 750 | 00:13:30 | 100.00% | 95.42% | 0.0015 | 0.1083 | 0.0100 |
10 | 800 | 00:14:32 | 100.00% | 95.69% | 0.0002 | 0.1211 | 0.0100 |
10 | 840 | 00:15:25 | 100.00% | 94.86% | 0.0001 | 0.1034 | 0.0100 |
Model | Learnable Properties (In Millions) | Test Accuracy |
---|---|---|
Resnet18 + YOLOv2 | 15.90 | 52% |
Resnet50 + YOLOv2 | 27.50 | 53% |
Darknet53 + YOLOv2 | 41.60 | 53% |
Darknet53 + YOLOv3 | 62.00 | 54% |
Proposed | 5.00 | 77% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakshit, H.; Bagheri Zadeh, P. A Novel Approach to Detect Drones Using Deep Convolutional Neural Network Architecture. Sensors 2024, 24, 4550. https://doi.org/10.3390/s24144550
Rakshit H, Bagheri Zadeh P. A Novel Approach to Detect Drones Using Deep Convolutional Neural Network Architecture. Sensors. 2024; 24(14):4550. https://doi.org/10.3390/s24144550
Chicago/Turabian StyleRakshit, Hrishi, and Pooneh Bagheri Zadeh. 2024. "A Novel Approach to Detect Drones Using Deep Convolutional Neural Network Architecture" Sensors 24, no. 14: 4550. https://doi.org/10.3390/s24144550
APA StyleRakshit, H., & Bagheri Zadeh, P. (2024). A Novel Approach to Detect Drones Using Deep Convolutional Neural Network Architecture. Sensors, 24(14), 4550. https://doi.org/10.3390/s24144550