Do Photopletysmographic Parameters of Arterial Stiffness Differ Depending on the Presence of Arterial Hypertension and/or Atherosclerosis?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Division of the Study Group into Subgroups
- (1)
- sex (men/women);
- (2)
- history of SARS-CoV-2 infection (yes/no).
2.3. Measurement of Laboratory Parameters
2.4. Blood Pressure Measurements
2.5. Measurement of Arterial Stiffness
2.6. Statistical Analyses
3. Results
3.1. Characteristics of the Study Group
3.2. Sex-Adjusted Analysis of Stiffness Parameters
3.3. COVID-19 History-Adjusted Analysis of Stiffness Parameters
3.4. Correlations between Arterial Stiffness Parameters and Blood Pressure Parameters
3.5. Univariate and Multivariate Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, S.M.; Seo, H.S.; Lim, H.E.; Shin, S.H.; Park, C.G.; Oh, D.J.; Ro, Y.M. Assessment of the Arterial Stiffness Index as a Clinical Parameter for Atherosclerotic Coronary Artery Disease. Korean Circ. J. 2004, 34, 677–683. [Google Scholar] [CrossRef]
- Mozos, I.; Malainer, C.; Horbańczuk, J.; Gug, C.; Stoian, D.; Luca, C.T.; Atanasov, A.G. Inflammatory Markers for Arterial Stiffness in Cardiovascular Diseases. Front. Immunol. 2017, 8, 1058. [Google Scholar] [CrossRef]
- Cecelja, M.; Chowienczyk, P. Role of Arterial Stiffness in Cardiovascular Disease. JRSM Cardiovasc. Dis. 2012, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mäki-Petäjä, K.M.; Wilkinson, I.B. Inflammation and Large Arteries: Potential Mechanisms for Inflammation-Induced Arterial Stiffness. Artery Res. 2012, 6, 59–64. [Google Scholar] [CrossRef]
- Cecelja, M.; Jiang, B.; Bevan, L.; Frost, M.L.; Spector, T.D.; Chowienczyk, P.J. Arterial Stiffening Relates to Arterial Calcification but Not to Noncalcified Atheroma in Women: A Twin Study. J. Am. Coll. Cardiol. 2011, 57, 1480–1486. [Google Scholar] [CrossRef]
- Vasan, R.S.; Pan, S.; Larson, M.G.; Mitchell, G.F.; Xanthakis, V. Arteriosclerosis, Atherosclerosis, and Cardiovascular Health: Joint Relations to the Incidence of Cardiovascular Disease. Hypertension 2021, 78, 1232–1240. [Google Scholar] [CrossRef]
- Wu, X.; Xiang, M.; Jing, H.; Wang, C.; Novakovic, V.A.; Shi, J. Damage to endothelial barriers and its contribution to long COVID. Angiogenesis 2024, 27, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Podrug, M.; Koren, P.; Dražić Maras, E.; Podrug, J.; Čulić, V.; Perissiou, M.; Bruno, R.M.; Mudnić, I.; Boban, M.; Jerončić, A. Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study. J. Clin. Med. 2023, 12, 2123. [Google Scholar] [CrossRef] [PubMed]
- Karimpour, P.; May, J.M.; Kyriacou, P.A. Photoplethysmography for the Assessment of Arterial Stiffness. Sensors 2023, 23, 9882. [Google Scholar] [CrossRef]
- Kim, K.B.; Baek, H.J. Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions. Electronics 2023, 12, 2923. [Google Scholar] [CrossRef]
- Laurent, S.; Boutouyrie, P. Arterial Stiffness and Hypertension in the Elderly. Front. Cardiovasc. Med. 2020, 7, 544302. [Google Scholar] [CrossRef] [PubMed]
- Dumor, K.; Shoemaker-Moyle, M.; Nistala, R.; Whaley-Connell, A. Arterial Stiffness in Hypertension: An Update. Curr. Hypertens. Rep. 2018, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, D.; Chiarelli, A.M.; Maddiona, L.; Rinella, S.; Bianco, F.; Bucciarelli, V.; Gallina, S.; Perciavalle, V.; Vinciguerra, V.; Merla, A.; et al. Multi-Site Photoplethysmographic and Electrocardiographic System for Arterial Stiffness and Cardiovascular Status Assessment. Sensors 2019, 19, 5570. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S. European Network for Non-Invasive Investigation of Large Arteries. Expert Consensus Document on Arterial Stiffness: Methodological Issues and Clinical Applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed]
- Veijalainen, A.; Tompuri, T.; Lakka, H.M.; Laitinen, T.; Lakka, T.A. Reproducibility of pulse contour analysis in children before and after maximal exercise stress test: The Physical Activity and Nutrition in Children (PANIC) study. Clin. Physiol. Funct. Imaging. 2011, 31, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Nichols, W.M.; O’Rourke, M.; Edelman, E.R.; Vlachopoulos, C. (Eds.) McDonald’s Blood Flow in Arteries Theoretical, Experimental and Clinical Principles, 7th ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Gunarathne, A.; Patel, J.V.; Hughes, E.A.; Lip, G.Y. Measurement of stiffness index by digital volume pulse analysis technique: Clinical utility in cardiovascular disease risk stratification. Am. J. Hypertens. 2008, 21, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Alaei-Shahmiri, F.; Zhao, Y.; Sherriff, J. Assessment of vascular function in individuals with hyperglycemia: A cross-sectional study of glucose-induced changes in digital volume pulse. J. Diabetes Metab. Disord. 2015, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, X.; Gu, Y.; Zhou, J.; Wu, J. Relationship of Noninvasive Assessment of Arterial Stiffness with 10-Year Atherosclerotic Cardiovascular Disease (ASCVD) Risk in a General Middle-Age and Elderly Population. Int. J. Gen. Med. 2021, 14, 6379–6387. [Google Scholar] [CrossRef]
- Millasseau, S.C.; Kelly, R.P.; Ritter, J.M.; Chowienczyk, P.J. Determination of Age-Related Increases in Large Artery Stiffness by Digital Pulse Contour Analysis. Clin. Sci. 2002, 103, 371–377. [Google Scholar] [CrossRef]
- Park, S.; Lakatta, E.G. Role of inflammation in the pathogenesis of arterial stiffness. Yonsei Med. J. 2012, 53, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Szoltysek-Boldys, I.; Zielinska-Danch, W.; Loboda, D.; Wilczek, J.; Gibinski, M.; Paradowska-Nowakowska, E.; Golba, K.S.; Sarecka-Hujar, B. Photoplethysmographic Measurement of Arterial Stiffness in Polish Patients with Long-COVID-19 Syndrome-The Results of a Cross-Sectional Study. Diagnostics 2022, 12, 3189. [Google Scholar] [CrossRef]
- Binder, S.; Navratil, K.; Halek, J. Chronic Smoking and Its Effect on Arterial Stiffness. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2008, 152, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Brillante, D.G.; O’Sullivan, A.J.; Howes, L.G. Arterial Stiffness Indices in Healthy Volunteers Using Non-Invasive Digital Photoplethysmography. Blood Press. 2008, 17, 116–123. [Google Scholar] [CrossRef]
- Kim, H.L. Arterial stiffness and hypertension. Clin. Hypertens. 2023, 29, 31. [Google Scholar] [CrossRef] [PubMed]
- JeyaShree, P.; Dilara, K.; Maruthy, K.N.; DhaMoDhiNi, K.S. Comparison of Arterial Stiffness among Prehypertensive and Normotensive Subjects Using Photo Pulse Plethysmography: A Pilot Study. J. Clin. Diagn. Res. 2024, 18, CC01–CC04. [Google Scholar] [CrossRef]
- Madhura, M.; Sandhya, T.A. Effect of Different Phases of Menstrual Cycle on Reflection Index, Stiffness Index and Pulse Wave Velocity in Healthy Subjects. J. Clin. Diagn. Res. 2014, 8, BC01. [Google Scholar]
- Said, M.A.; Eppinga, R.N.; Lipsic, E.; Verweij, N.; van der Harst, P. Relationship of Arterial Stiffness Index and Pulse Pressure With Cardiovascular Disease and Mortality. J. Am. Heart Assoc. 2018, 7, e007621. [Google Scholar] [CrossRef]
- Nandadeva, D.; Skow, R.J.; Stephens, B.Y.; Grotle, A.K.; Georgoudiou, S.; Barshikar, S.; Seo, Y.; Fadel, P.J. Cardiovascular and cerebral vascular health in females with postacute sequelae of COVID-19. American journal of physiology. Heart Circ. Physiol. 2023, 324, H713–H720. [Google Scholar] [CrossRef]
- Zhang, V.; Fisher, M.; Hou, W.; Zhang, L.; Duong, T.Q. Incidence of New-Onset Hypertension Post-COVID-19: Comparison With Influenza. Hypertension 2023, 80, 2135–2148. [Google Scholar] [CrossRef]
- Courand, P.-Y.; Lantelme, P. Significance, Prognostic Value and Management of Heart Rate in Hypertension. Arch. Cardiovasc. Dis. 2014, 107, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, W.; Li, F. Association between resting heart rate and coronary artery disease, stroke, sudden death and noncardiovascular diseases: A meta-analysis. CMAJ Can. Med. Assoc. J. 2016, 188, E384–E392. [Google Scholar] [CrossRef] [PubMed]
- Reule, S.; Drawz, P.E. Heart Rate and Blood Pressure: Any Possible Implications for Management of Hypertension? Curr. Hypertens. Rep. 2012, 14, 478–484. [Google Scholar] [CrossRef]
- Alnaeb, M.E.; Alobaid, N.; Seifalian, A.M.; Mikhailidis, D.P.; Hamilton, G. Optical Techniques in the Assessment of Peripheral Arterial Disease. Curr. Vasc. Pharmacol. 2007, 5, 53–59. [Google Scholar] [CrossRef]
Total Group N = 333 | Females N = 176 | Males N = 157 | p | |
---|---|---|---|---|
Age [years], M ± SD | 60.42 ± 11.76 | 59.41 ± 11.50 | 61.55 ± 11.97 | 0.097 |
BMI [kg/m2], M ± SD | 28.80 ± 4.99 | 28.54 ± 5.65 | 29.08 ± 4.15 | 0.330 |
Smoking status, n (%) | <0.001 | |||
Nonsmokers | 175 (52.55) | 112 (63.64) | 63 (40.13) | |
Smokers | 28 (8.41) | 12 (6.82) | 18 (11.46) | |
Former smokers | 130 (39.04) | 54 (30.68) | 76 (48.41) | |
TC [mg/dL], M ± SD | 215.06 ± 67.07 | 225.93 ± 63.65 | 202.30 ± 68.93 | 0.002 |
LDL [mg/dL], M ± SD | 127.81 ± 48.28 | 135.83 ± 46.27 | 118.57 ± 49.05 | 0.002 |
HDL [mg/dL], M ± SD | 63.93 ± 25.92 | 70.77 ± 25.55 | 56.02 ± 24.12 | <0.001 |
TG [mg/dL], M ± SD | 168.00 ± 109.73 | 157.23 ± 80.92 | 180.31 ± 134.65 | 0.070 |
D-dimers [mg/L], M ± SD | 0.70 ± 0.73 | 0.75 ± 0.73 | 0.63 ± 0.73 | 0.280 |
HR [beats/min], M ± SD | 69.92 ± 11.00 | 70.24 ± 10.89 | 69.55 ± 11.15 | 0.569 |
SBP [mmHg], M ± SD | 130.39 ± 17.25 | 129.46 ± 17.34 | 131.42 ± 17.15 | 0.310 |
DBP [mmHg], M ± SD | 77.58 ± 9.01 | 76.36 ± 8.94 | 78.96 ± 8.93 | 0.010 |
SI [m/s], M ± SD | 8.68 ± 1.97 | 8.10 ± 1.74 | 9.34 ± 2.00 | <0.001 |
RI [%], M ± SD | 56.34 ± 16.80 | 50.57 ± 16.43 | 62.81 ± 14.77 | <0.001 |
PPT [s], M ± SD | 207.84 ± 59.38 | 213.95 ± 56.38 | 201.00 ± 62.04 | 0.047 |
Total Group N = 333 | Females N = 176 | Males N = 157 | p | |
---|---|---|---|---|
Diabetes mellitus, n (%) | 78 (23.42) | 31 (17.61) | 47 (29.94) | 0.012 |
Heart failure, n (%) | 43 (12.91) | 34 (19.32) | 9 (5.73) | <0.001 |
Asthma/Chronic lung disease, n (%) | 34 (10.21) | 16 (9.09) | 18 (11.46) | 0.865 |
Chronic renal failure, n (%) | 28 (8.41) | 15 (8.52) | 13 (8.28) | 0.583 |
COVID-19, n (%) | 276 (82.88) | 152 (86.36) | 124 (78.98) | 0.128 |
Gout, n (%) | 33 (9.91) | 15 (8.52) | 18 (11.46) | 0.952 |
Group I Patients without AH or AS N = 109 | Group II AH Patients N = 147 | Group III AS Patients N = 18 | Group IV AH/AS Patients N = 59 | p | |
---|---|---|---|---|---|
Age [years], M ± SD | 54.39 ± 13.00 | 61.39 ± 9.28 | 62.39 ± 10.09 | 68.54 ± 9.53 | <0.001 |
BMI [kg/m2], M ± SD | 26.67 ± 4.59 | 29.89 ± 4.73 | 28.35 ± 5.61 | 30.19 ± 4.89 | <0.001 |
Smoking status, n (%) | 0.002 | ||||
Nonsmokers | 64 (58.72) | 85 (57.82) | 4 (22.22) | 22 (37.29) | |
Smokers | 10 (9.17) | 9 (6.12) | 5 (27.78) | 4 (6.78) | |
Former smokers | 35 (32.11) | 53 (36.05) | 9 (50.00) | 33 (55.93) | |
HR [beats/min], M ± SD | 69.64 ± 11.36 | 71.36 ± 10.66 | 71.68 ± 10.82 | 66.29 ± 10.61 | 0.038 |
SBP [mmHg], M ± SD | 121.91 ± 17.48 | 137.35 ± 15.38 | 128.35 ± 15.63 | 129.13 ± 14.22 | <0.001 |
DBP [mmHg], M ± SD | 75.15 ± 9.17 | 80.53 ± 8.28 | 76.53 ± 9.91 | 74.87 ± 8.12 | <0.001 |
SI [m/s], M ± SD | 8.33 ± 1.98 | 8.85 ± 1.96 | 8.76 ± 1.59 | 8.90 ± 2.00 | 0.038 |
RI [%], M ± SD | 54.17 ± 18.67 | 56.75 ± 16.43 | 57.88 ± 15.53 | 58.87 ± 14.14 | 0.499 |
PPT [s], M ± SD | 212.83 ± 47.41 | 203.89 ± 57.04 | 199.30 ± 40.83 | 211.10 ± 84.85 | 0.157 |
Group I Patients without AH or AS N = 109 | Group II AH Patients N = 147 | Group III AS Patients N = 18 | Group IV AS/AH Patients N = 59 | p | |
---|---|---|---|---|---|
Diabetes mellitus, n (%) | 10 (9.17) | 38 (25.85) | 5 (27.78) | 25 (42.37) | <0.001 |
Heart failure, n (%) | 5 (4.59) | 10 (6.80) | 5 (27.78) | 23 (38.98) | <0.001 |
Asthma/Chronic lung disease, n (%) | 10 (10.09) | 14 (9.52) | 2 (11.11) | 7 (11.86) | 0.967 |
Chronic renal failure, n (%) | 1 (0.92) | 10 (6.80) | 2 (11.11) | 15 (25.86) | <0.001 |
COVID-19, n (%) | 95 (87.16) | 135 (91.84) | 14 (77.78) | 32 (55.17) | <0.001 |
Gout, n (%) | 2 (1.94) | 18 (13.23) | 1 (5.88) | 12 (21.43) | <0.001 |
Arterial Stiffness Parameters | Women | Men | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SI [m/s] | RI [%] | PPT [s] | SI [m/s] | RI [%] | PPT [s] | |||||||
r | p | r | p | r | p | r | p | r | p | r | p | |
HR [beats/min] | 0.144 | 0.062 | −0.434 | <0.001 | −0.167 | 0.030 | 0.102 | 0.212 | −0.309 | <0.001 | −0.239 | 0.003 |
SBP [mmHg] | 0.055 | 0.482 | 0.030 | 0.699 | −0.066 | 0.391 | 0.074 | 0.363 | 0.042 | 0.611 | 0.056 | 0.491 |
DBP [mmHg] | 0.124 | 0.107 | −0.013 | 0.869 | −0.049 | 0.529 | 0.295 | <0.001 | 0.204 | 0.012 | −0.264 | 0.001 |
Arterial Stiffness Parameters | Group I Patients without AH or AS | Group II AH Patients | ||||||||||
SI [m/s] | RI [%] | PPT [s] | SI [m/s] | RI [%] | PPT [s] | |||||||
r | p | r | p | r | p | r | p | r | p | r | p | |
HR [beats/min] | −0.021 | 0.833 | −0.496 | <0.001 | −0.022 | 0.822 | 0.099 | 0.240 | −0.363 | <0.001 | −0.178 | 0.033 |
SBP [mmHg] | 0.061 | 0.531 | 0.014 | 0.887 | −0.052 | 0.601 | 0.170 | 0.042 | 0.144 | 0.085 | −0.082 | 0.332 |
DBP [mmHg] | 0.184 | 0.059 | 0.128 | 0.189 | −0.145 | 0.138 | 0.144 | 0.085 | 0.108 | 0.200 | −0.082 | 0.330 |
Arterial stiffness parameters | Group III AS patients | Group IV AH/AS patients | ||||||||||
SI [m/s] | RI [%] | PPT [s] | SI [m/s] | RI [%] | PPT [s] | |||||||
r | p | r | p | r | p | r | p | r | p | r | p | |
HR [beats/min] | −0.386 | 0.126 | −0.486 | 0.048 | 0.293 | 0.254 | 0.482 | <0.001 | 0.189 | 0.891 | −0.488 | <0.001 |
SBP [mmHg] | 0.049 | 0.851 | 0.097 | 0.711 | 0.036 | 0.891 | −0.103 | 0.453 | −0.230 | 0.091 | 0.304 | 0.024 |
DBP [mmHg] | 0.219 | 0.398 | 0.056 | 0.831 | −0.184 | 0.478 | 0.503 | <0.001 | 0.268 | 0.048 | −0.375 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szołtysek-Bołdys, I.; Zielińska-Danch, W.; Łoboda, D.; Gołba, K.S.; Sarecka-Hujar, B. Do Photopletysmographic Parameters of Arterial Stiffness Differ Depending on the Presence of Arterial Hypertension and/or Atherosclerosis? Sensors 2024, 24, 4572. https://doi.org/10.3390/s24144572
Szołtysek-Bołdys I, Zielińska-Danch W, Łoboda D, Gołba KS, Sarecka-Hujar B. Do Photopletysmographic Parameters of Arterial Stiffness Differ Depending on the Presence of Arterial Hypertension and/or Atherosclerosis? Sensors. 2024; 24(14):4572. https://doi.org/10.3390/s24144572
Chicago/Turabian StyleSzołtysek-Bołdys, Izabela, Wioleta Zielińska-Danch, Danuta Łoboda, Krzysztof S. Gołba, and Beata Sarecka-Hujar. 2024. "Do Photopletysmographic Parameters of Arterial Stiffness Differ Depending on the Presence of Arterial Hypertension and/or Atherosclerosis?" Sensors 24, no. 14: 4572. https://doi.org/10.3390/s24144572
APA StyleSzołtysek-Bołdys, I., Zielińska-Danch, W., Łoboda, D., Gołba, K. S., & Sarecka-Hujar, B. (2024). Do Photopletysmographic Parameters of Arterial Stiffness Differ Depending on the Presence of Arterial Hypertension and/or Atherosclerosis? Sensors, 24(14), 4572. https://doi.org/10.3390/s24144572