Predefined-Time Adaptive Neural Tracking Control for a Single Link Manipulator with an Event-Triggered Mechanism
Abstract
:1. Introduction
- (1)
- Diverging from finite-time [22,23] and fixed-time [24,25] control theories, the controller introduced in this study guarantees tracking error convergence to a designated area within a predefined time. Adjusting a single control parameter allows for the precise setting of the settling time’s upper bound, independent of initial conditions, aligning with practical engineering demands for system convergence time and precision.
- (2)
- (3)
2. Methods
2.1. Model of a Robotic Manipulator System
- (1)
- The position of the robotic manipulator joint can precisely follow the reference angle , with the tracking error rigorously confined within a compact set;
- (2)
- All signals within the closed-loop robotic manipulator system remain bounded within the predefined timeframe;
- (3)
- According to the proposed controller, it can significantly reduce the consumption of communication resources without compromising control precision.
2.2. Preparatory Work
2.3. Radial Basis Neural Network (RBFNN)
2.4. Controller Design
2.4.1. Adaptive Predefined-Time RBFNN Control Design
2.4.2. Event-Triggered Mechanism Design
2.4.3. Stability Analysis
2.5. Feasibility Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johannsmeier, L.; Haddadin, S. A Hierarchical Human-Robot Interaction-Planning Framework for Task Allocation in Collaborative Industrial Assembly Processes. IEEE Robot. Autom. Lett. 2017, 2, 41–48. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Lin, Y.; Xi, F.; Guo, S. Calibration-Based Iterative Learning Control for Path Tracking of Industrial Robots. IEEE Trans. Ind. Electron. 2015, 62, 2921–2929. [Google Scholar] [CrossRef]
- Chen, W.H.; Ballance, D.; Gawthrop, P.; O’Reilly, J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 2000, 47, 932–938. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, W.; Xing, M.; Wu, Y.; Xu, R.; Wu, X. Boundary Control of a Rotating and Length-Varying Flexible Robotic Manipulator System. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 377–386. [Google Scholar] [CrossRef]
- Rocco, P. Stability of PID control for industrial robot arms. IEEE Trans. Robot. Autom. 1996, 12, 606–614. [Google Scholar] [CrossRef]
- Luo, G.; Saridis, G. L-Q design of PID controllers for robot arms. IEEE J. Robot. Autom. 1985, 1, 152–159. [Google Scholar] [CrossRef]
- Xiao, B.; Cao, L.; Xu, S.; Liu, L. Robust Tracking Control of Robot Manipulators with Actuator Faults and Joint Velocity Measurement Uncertainty. IEEE/ASME Trans. Mechatronics 2020, 25, 1354–1365. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, B.; Shi, P.; Lim, C.C. Consensus for multiagent systems under output constraints and unknown control directions. IEEE Syst. J. 2022, 17, 1035–1044. [Google Scholar] [CrossRef]
- Hu, Y.; Gu, W.; Zhang, H.; Chen, H. Adaptive Robust Triple-Step Control for Compensating Cogging Torque and Model Uncertainty in a DC Motor. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2396–2405. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, G.; Chen, M. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1864–1877. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Dong, Y.; Sun, C. Adaptive Neural Impedance Control of a Robotic Manipulator with Input Saturation. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 334–344. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, L. An Adaptive Neural Network Control Method for Robotic Manipulators Trajectory Tracking. In Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 4839–4844. [Google Scholar] [CrossRef]
- Huang, X.; Gao, H.; Li, J.; Mao, R.; Wen, J. Adaptive back-stepping tracking control of robot manipulators considering actuator dynamic. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 941–946. [Google Scholar] [CrossRef]
- Lee, J.; Yeon, J.S.; Park, J.H.; Lee, S. Robust back-stepping control for flexible-joint robot manipulators. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 183–188. [Google Scholar] [CrossRef]
- Zouari, L.; Abid, H.; Abid, M. Flexible joint manipulator based on backstepping controller. In Proceedings of the 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Hammamet, Tunisia, 21–23 December 2014; pp. 330–334. [Google Scholar] [CrossRef]
- Thaler, J.J.; Simaitis, V.J.; Becker, J.J.; Wisniewski, W.J. Event Trigger for the MARK-III Detector at SPEAR. IEEE Trans. Nucl. Sci. 1983, 30, 236–239. [Google Scholar] [CrossRef]
- Kameyama, T.; Zhao, X.; Yang, Z.J. Event-triggered sliding mode control of a robot manipulator. In Proceedings of the 2022 International Conference on Advanced Mechatronic Systems (ICAMechS), Toyama, Japan, 17–20 December 2022; pp. 16–20. [Google Scholar] [CrossRef]
- Benitez-Garcia, S.E.; Villarreal-Cervantes, M.G.; Guerrero-Castellanos, J.F.; Sánchez-Santana, J.P. Periodic Event-Triggered Control for the Stabilization of Robotic Manipulators. IEEE Access 2020, 8, 111553–111565. [Google Scholar] [CrossRef]
- Yuxiao, L.; Wenjing, Y.; Linqi, W.; Xueliang, W.; Jianwei, X. Adaptive neural network tracking control for a class of nonstrict-feedback nonlinear systems based on event-triggering mechanism. Nanjing Xinxi Gongcheng Daxue Xuebao 2021, 13, 59–65. [Google Scholar]
- Wei, B.; Xiao, F.; Shi, Y. Dynamic event-triggered control for networked Euler-Lagrange systems. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 1245–1250. [Google Scholar] [CrossRef]
- Kumar, N.; Porwal, A.; Singh, A.R.; Naskar, R.; Purwar, S. Event Triggered Control of Robot Manipulator. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; pp. 362–366. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.; Yu, J.; Liu, J. Adaptive Neural Network-Based Finite-Time Impedance Control of Constrained Robotic Manipulators With Disturbance Observer. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 1412–1416. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, Y.; He, W.; Na, J.; Li, Z.; Xu, B. Adaptive Parameter Estimation and Control Design for Robot Manipulators With Finite-Time Convergence. IEEE Trans. Ind. Electron. 2018, 65, 8112–8123. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Hou, Y.; Li, H. Fixed-Time Sliding Mode Control for Uncertain Robot Manipulators. IEEE Access 2019, 7, 149750–149763. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.; Tang, D.; Hou, Y.; Wang, Y. Adaptive Fixed-Time Fault-Tolerant Tracking Control and Its Application for Robot Manipulators. IEEE Trans. Ind. Electron. 2022, 69, 2956–2966. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, S.; Yu, X.; Kong, L.; Li, Q.; Li, G. Adaptive Neural Network Fixed-Time Control Design for Bilateral Teleoperation With Time Delay. IEEE Trans. Cybern. 2022, 52, 9756–9769. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Torres, J.D.; Sanchez, E.N.; Loukianov, A.G. Predefined-time stability of dynamical systems with sliding modes. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 5842–5846. [Google Scholar] [CrossRef]
- Zhou, S.; Song, Y.; Wen, C. Event-Triggered Practical Prescribed Time Output Feedback Neuroadaptive Tracking Control Under Saturated Actuation. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 4717–4727. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cao, J.; Liu, H. Adaptive Fuzzy Control of Nonlinear Systems With Predefined Time and Accuracy. IEEE Trans. Fuzzy Syst. 2022, 30, 5152–5165. [Google Scholar] [CrossRef]
- Xie, S.; Chen, Q. Adaptive Nonsingular Predefined-Time Control for Attitude Stabilization of Rigid Spacecrafts. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 189–193. [Google Scholar] [CrossRef]
- Ding, M.; Wu, H.; Zheng, X.; Guo, Y. Adaptive Predefined-Time Attitude Stabilization Control of Space Continuum Robot. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 647–651. [Google Scholar] [CrossRef]
- Fang, H.; Wu, Y.; Xu, T.; Wan, F. Adaptive neural sliding mode control of uncertain robotic manipulators with predefined time convergence. Int. J. Robust Nonlinear Control 2022, 32, 9213–9238. [Google Scholar] [CrossRef]
- Wang, H.; Xu, K.; Qiu, J. Event-Triggered Adaptive Fuzzy Fixed-Time Tracking Control for a Class of Nonstrict-Feedback Nonlinear Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3058–3068. [Google Scholar] [CrossRef]
- Zhang, Y.; Chadli, M.; Xiang, Z. Predefined-time adaptive fuzzy control for a class of nonlinear systems with output hysteresis. IEEE Trans. Fuzzy Syst. 2022, 31, 2522–2531. [Google Scholar] [CrossRef]
- Qian, C.; Lin, W. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 2001, 42, 185–200. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, C.; Xing, L.; Song, Y. Event-Triggered Adaptive Control for a Class of Nonlinear Systems With Mismatched Uncertainties via Intermittent and Faulty Output Feedback. IEEE Trans. Autom. Control 2023, 68, 8142–8149. [Google Scholar] [CrossRef]
- Tang, L.; Li, Y.; Liu, Y.J. Adaptive Event-Triggered Vibration Control for Crane Bridge System with Trolley. IEEE Trans. Instrum. Meas. 2023, 72, 1–10. [Google Scholar] [CrossRef]
Parameter | Value | Units |
---|---|---|
m | 1 | kg |
l | 0.5 | m |
1 | N·m·s/rad | |
g | 9.8 | m/s2 |
d | N·m | |
0.72 | rad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sun, Y.; Zhang, Y.; Huang, J. Predefined-Time Adaptive Neural Tracking Control for a Single Link Manipulator with an Event-Triggered Mechanism. Sensors 2024, 24, 4573. https://doi.org/10.3390/s24144573
Wang Y, Sun Y, Zhang Y, Huang J. Predefined-Time Adaptive Neural Tracking Control for a Single Link Manipulator with an Event-Triggered Mechanism. Sensors. 2024; 24(14):4573. https://doi.org/10.3390/s24144573
Chicago/Turabian StyleWang, Yikai, Yuan Sun, Yueyuan Zhang, and Jun Huang. 2024. "Predefined-Time Adaptive Neural Tracking Control for a Single Link Manipulator with an Event-Triggered Mechanism" Sensors 24, no. 14: 4573. https://doi.org/10.3390/s24144573
APA StyleWang, Y., Sun, Y., Zhang, Y., & Huang, J. (2024). Predefined-Time Adaptive Neural Tracking Control for a Single Link Manipulator with an Event-Triggered Mechanism. Sensors, 24(14), 4573. https://doi.org/10.3390/s24144573