Flexible Strain Sensors Based on Thermoplastic Polyurethane Fabricated by Electrospinning: A Review
Abstract
:1. Introduction
2. Electrospinning TPU Strain Sensors
2.1. Strain Sensors
2.2. Electrospinning Techniques
2.3. Characterized Electrospun TPU Strain Sensors
3. The Use of Conductive Fillers in Electrospun TPU Strain Sensors
3.1. Carbonaceous Materials
3.1.1. Zero-Dimensional Carbonaceous Material—CB
3.1.2. One-Dimensional Carbonaceous Material—CNTs
3.1.3. Two-Dimensional Carbonaceous Material—Gr
3.1.4. Multi-Dimensional Hybrid Carbonaceous Materials
3.2. MXene
3.3. Metallic Materials
3.3.1. Silver Nanomaterials
3.3.2. Liquid Metal
3.4. Conductive Polymers
4. The Application of Electrospun TPU Strain Sensors
4.1. Motion Detection
4.2. Health Monitoring
4.3. Human–Computer Interaction
5. Conclusions and Outlook
- (1)
- As we stand on the precipice of a transformative era in the field of flexible strain sensors, the future holds a wealth of opportunities and challenges. Enhancing material properties is central to ongoing research, with scientists striving to achieve a more uniform distribution of conductive fillers within the microstructure of materials. Exploring novel composites and nanomaterials, such as carbon nanotubes, graphene, and metallic nanoparticles, is expected to significantly improve the sensitivity, response time, and durability of strain sensors.
- (2)
- The integration of electrospun TPU flexible strain sensors with AI and IoT presents a particularly promising avenue. AI algorithms can enable real-time data processing and analysis, leading to more precise health monitoring and predictive maintenance in industrial settings. IoT integration facilitates seamless data transmission, which is essential for remote monitoring and control systems in various applications.
- (3)
- Innovations in manufacturing techniques, such as the fusion of 3D printing with electrospinning, are set to revolutionize the development of electrospun TPU flexible strain sensors. This hybrid approach allows for the creation of sensors with complex geometries and tailored mechanical properties to meet specific application requirements.
- (4)
- Despite the optimistic outlook, challenges remain. The long-term stability and durability of sensors under real-world conditions are significant concerns. Sensors must be able to withstand environmental factors such as temperature fluctuations, humidity, and mechanical stress without performance degradation. Addressing these issues requires rigorous material testing and the development of robust encapsulation techniques.
- (5)
- Biocompatibility and safety are paramount, especially in applications where sensors come into direct contact with the human body. Extensive research is needed to ensure that sensor materials do not induce adverse reactions and are safe for long-term use. This includes understanding the interaction between sensor materials and biological systems at the molecular level.
- (6)
- Establishing standardized testing protocols and regulatory frameworks is critical as the technology evolves. Universally accepted standards are necessary to evaluate the performance, reliability, and safety of electrospun TPU flexible strain sensors, facilitating their commercialization and building consumer trust.
- (7)
- Cost remains a significant barrier to widespread adoption. Research into scalable manufacturing processes and the use of cost-efficient materials is essential for making these sensors more accessible to a broader market.
- (8)
- Overcoming these challenges necessitates a collaborative approach, involving experts from diverse fields such as materials science, electrical engineering, biomedical engineering, and data science. Interdisciplinary research will foster innovation and accelerate the development of electrospun TPU flexible strain sensors capable of meeting future demands.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.F.; Abidian, M.R.; Ahn, J.H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.N.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.W.; Chang, X.H.; Xu, Y.Q.; Zhao, G.Y.; Zhu, Y.T.; Li, Y.J. A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range. J. Mater. Chem. A 2021, 9, 1795–1802. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, H.H.; Zhao, Y.Y.; Huyan, C.X.; Wang, Z.B.; Torun, H.; Guo, Z.H.; Dai, S.; Xu, B.B.; Chen, F. A Strand Entangled Supramolecular PANI/PAA Hydrogel Enabled Ultra-Stretchable Strain Sensor. Small 2022, 18, 2203258. [Google Scholar] [CrossRef]
- Wei, Q.K.; Chen, G.R.; Pan, H.; Ye, Z.B.; Au, C.; Chen, C.X.; Zhao, X.; Zhou, Y.H.; Xiao, X.; Tai, H.L.; et al. MXene-Sponge Based High-Performance Piezoresistive Sensor for Wearable Biomonitoring and Real-Time Tactile Sensing. Small Methods 2022, 6, e2101051. [Google Scholar] [CrossRef]
- Wang, X.J.; Xue, R.; Li, M.Z.; Guo, X.Y.; Liu, B.; Xu, W.G.; Wang, Z.; Liu, Y.Q.; Wang, G.H. Strain and stress sensing properties of the MWCNT/TPU nanofiber film. Surf. Interfaces 2022, 32, 102132. [Google Scholar] [CrossRef]
- He, Z.; Byun, J.H.; Zhou, G.H.; Park, B.J.; Kim, T.H.; Lee, S.B.; Yi, J.W.; Um, M.K.; Chou, T.W. Effect of MWCNT content on the mechanical and strain-sensing performance of Thermoplastic Polyurethane composite fibers. Carbon 2019, 146, 701–708. [Google Scholar] [CrossRef]
- Liu, L.P.; Niu, S.C.; Zhang, J.Q.; Mu, Z.Z.; Li, J.; Li, B.; Meng, X.C.; Zhang, C.C.; Wang, Y.Q.; Hou, T.; et al. Bioinspired, Omnidirectional, and Hypersensitive Flexible Strain Sensors. Adv. Mater. 2022, 34, 2200823. [Google Scholar] [CrossRef]
- Liu, E.Z.; Cai, Z.M.; Ye, Y.W.; Zhou, M.Y.; Liao, H.; Yi, Y. An Overview of Flexible Sensors: Development, Application, and Challenges. Sensors 2023, 23, 817. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Q.S.; Schubert, D.W.; Liu, X.H. Review on Electrospun Conductive Polymer Composites Strain Sensors. Adv. Mater. Technol. 2023, 8, 2300293. [Google Scholar] [CrossRef]
- Zheng, Q.B.; Lee, J.H.; Shen, X.; Chen, X.D.; Kim, J.K. Graphene-based wearable piezoresistive physical sensors. Mater. Today 2020, 36, 158–179. [Google Scholar] [CrossRef]
- Chen, T.J.; Xie, Y.T.; Wang, Z.Y.; Lou, J.X.; Liu, D.Y.; Xu, R.X.; Cui, Z.Y.; Li, S.M.; Panahi-Sarmad, M.; Xiao, X.L. Recent Advances of Flexible Strain Sensors Based on Conductive Fillers and Thermoplastic Polyurethane Matrixes. ACS Appl. Polym. Mater. 2021, 3, 5317–5338. [Google Scholar] [CrossRef]
- Yu, H.J.; An, H.S.; Shin, J.H.; Brunetti, A.; Lee, J.S. A new dip-coating approach for plasticization-resistant polyimide hollow fiber membranes: In situ thermal imidization and cross-linking of polyamic acid. Chem. Eng. J. 2023, 473, 145378. [Google Scholar] [CrossRef]
- Lu, Y.; Li, W.S.; Zhou, J.F.; Ren, Y.; Wang, X.F.; Li, J.; Zhu, S. Strengthening and toughening behaviours and mechanisms of carbon fiber reinforced polyetheretherketone composites (CF/PEEK). Compos. Commun. 2023, 37, 101397. [Google Scholar] [CrossRef]
- Kyeong, M.; Chae, J.E.; Lee, S.Y.; Lim, T.H.; Kim, M.; Lee, S.S.; Song, K.H.; Kim, H.J. Development of Poly(Arylene ether Sulfone)-Based blend membranes containing aliphatic moieties for the low-temperature decal transfer method. J. Membr. Sci. 2022, 660, 120853. [Google Scholar] [CrossRef]
- Wang, J.J.; Yang, C.; Zhang, L.L.; Cui, C.W.; Zeng, X.F.; Chen, J.F. Monodispersed zinc oxide nanoparticles as multifunctional additives for polycarbonate thermoplastic with high transparency and excellent comprehensive performance. Adv. Compos. Hybrid Mater. 2022, 5, 2936–2947. [Google Scholar] [CrossRef]
- Chen, C.H.; Hu, F.; Su, Z.H.; Yu, Y.J.; Wang, K.L.; Shi, Y.R.; Chen, J.; Xia, Y.; Gao, X.Y.; Wang, Z.K.; et al. Spring-Like Ammonium Salt Assisting Stress Release for Low-Temperature Deposited FAPbI3 Films Toward Flexible Photovoltaic Application. Adv. Funct. Mater. 2023, 33, 2213661. [Google Scholar] [CrossRef]
- Ren, J.Y.; Liu, Y.H.; Wang, Z.Q.; Chen, S.Q.; Ma, Y.F.; Wei, H.; Lu, S.Y. An Anti-Swellable Hydrogel Strain Sensor for Underwater Motion Detection. Adv. Funct. Mater. 2022, 32, 2107404. [Google Scholar] [CrossRef]
- Ma, J.W.; Fan, H.Q.; Li, Z.X.; Jia, Y.X.; Yadav, A.K.; Dong, G.Z.; Wang, W.J.; Dong, W.Q.; Wang, S.R. Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses. Sens. Actuator B-Chem. 2021, 334, 129677. [Google Scholar] [CrossRef]
- Veske, P.; Bossuyt, F.; Vanfleteren, J. Testing for Wearability and Reliability of TPU Lamination Method in E-Textiles. Sensors 2022, 22, 156. [Google Scholar] [CrossRef]
- Fu, Y.T.; Li, J.; Li, Y.Q.; Fu, S.Y.; Guo, F.L. Full-process multi-scale morphological and mechanical analyses of 3D printed short carbon fiber reinforced polyetheretherketone composites. Compos. Sci. Technol. 2023, 236, 109999. [Google Scholar] [CrossRef]
- Mahdavi, H.; Hosseini, F.; Heidari, A.A.; Karami, M. Polyethersulfone-TPU blend membrane coated with an environmentally friendly sabja seed mucilage-Cu2+cross-linked layer with outstanding separation performance and superior antifouling. J. Ind. Eng. Chem. 2023, 121, 421–433. [Google Scholar] [CrossRef]
- Mao, S.H.; Liu, W.; Xie, Z.M.; Zhang, D.; Zhou, J.H.; Xu, Y.S.; Fu, B.P.; Zheng, S.Y.; Zhang, L.; Yang, J.T. In Situ Growth of Functional Hydrogel Coatings by a Reactive Polyurethane for Biomedical Devices. ACS Appl. Mater. Interfaces 2023, 15, 56652–56664. [Google Scholar] [CrossRef]
- Guo, Y.H.; Guo, Y.C.; He, W.D.; Zhao, Y.B.; Shen, R.Q.; Liu, J.X.; Wang, J. PET/TPU nanofiber composite filters with high interfacial adhesion strength based on one-step co-electrospinning. Powder Technol. 2021, 387, 136–145. [Google Scholar] [CrossRef]
- Tyagi, M.; Rawat, R.S.; Tyagi, V.K.; Talwar, M.; Kumar, M.; Das, M.; Roy, P. Study on mechanical, thermal and shape memory properties of polycarbonate/thermoplastic polyurethane blends. J. Appl. Polym. Sci. 2024, 141, e55259. [Google Scholar] [CrossRef]
- Tang, J.; Wu, Y.T.; Ma, S.D.; Yan, T.; Pan, Z.J. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage. Compos. Part B-Eng. 2022, 232, 109605. [Google Scholar] [CrossRef]
- Zhang, X.N.; Li, J.W.; Lin, J.; Li, W.; Chu, W.; Zhang, M.M.; Lu, Y.Y.; He, X.H.; Zhao, Q.L. Highly Stretchable Electronic-Skin Sensors with Porous Microstructure for Efficient Multimodal Sensing with Wearable Comfort. Adv. Mater. Interfaces 2023, 10, 2201958. [Google Scholar] [CrossRef]
- Li, B.; Liang, W.; Zhang, L.; Ren, F.C.; Xuan, F.Z. TPU/CNTs flexible strain sensor with auxetic structure via a novel hybrid manufacturing process of fused deposition modeling 3D printing and ultrasonic cavitation-enabled treatment. Sens. Actuator A-Phys. 2022, 340, 113526. [Google Scholar] [CrossRef]
- Mei, S.X.; Zhang, X.M.; Ding, B.W.; Wang, J.Q.; Yang, P.F.; She, H.B.; Cui, Z.; Liu, M.Y.; Pang, X.C.; Fu, P. 3D-Printed thermoplastic polyurethane/graphene composite with porous segregated structure: Toward ultralow percolation threshold and great strain sensitivity. J. Appl. Polym. Sci. 2021, 138, 50168. [Google Scholar] [CrossRef]
- Tian, Z.; Qin, W.; Wang, Y.; Li, X.; Gu, C.; Chen, J.; Yang, M.; Feng, L.; Chen, J.; Qiao, H. Ultra-stable strain/humidity dual-functional flexible wearable sensor based on brush-like AgNPs@ CNTs@ TPU heterogeneous structure. Colloids Surf. A: Physicochem. Eng. Asp. 2023, 670, 131398. [Google Scholar] [CrossRef]
- Chang, X.T.; Sun, S.H.; Sun, S.B.; Liu, T.; Xiong, X.; Lei, Y.H.; Dong, L.H.; Yin, Y.S. ZnO nanorods/carbon black-based flexible strain sensor for detecting human motions. J. Alloys Compd. 2018, 738, 111–117. [Google Scholar] [CrossRef]
- Pan, W.; Wang, J.; Li, Y.P.; Sun, X.B.; Wang, J.P.; Wang, X.X.; Zhang, J.; You, H.D.; Yu, G.F.; Long, Y.Z. Facile Preparation of Highly Stretchable TPU/Ag Nanowire Strain Sensor with Spring-Like Configuration. Polymers 2020, 12, 339. [Google Scholar] [CrossRef]
- Shi, W.H.; Han, G.Y.; Chang, Y.Z.; Song, H.; Hou, W.J.; Chen, Q. Using Stretchable PPy@PVA Composites as a High-Sensitivity Strain Sensor To Monitor Minute Motion. ACS Appl. Mater. Interfaces 2020, 12, 45373–45382. [Google Scholar] [CrossRef]
- Rehman, M.H.U.; Nazar, R.; Yasin, S.; Ramzan, N.; Habib, M.S. Development of PANI-TPU/MWCNTs based nanocomposites for piezoresistive strain sensing applications. Mater. Lett. 2022, 328, 133110. [Google Scholar] [CrossRef]
- Backes, E.H.; Harb, S.V.; Pinto, L.A.; de Moura, N.K.; Morgado, G.F.D.; Marini, J.; Passador, F.R.; Pessan, L.A. Thermoplastic polyurethanes: Synthesis, fabrication techniques, blends, composites, and applications. J. Mater. Sci. 2024, 59, 1123–1152. [Google Scholar] [CrossRef]
- Yang, Q.S.; Liu, N.; Yin, J.J.; Tian, H.; Yang, Y.; Ren, T.L. Understanding the Origin of Tensile Response in a Graphene Textile Strain Sensor with Negative Differential Resistance. ACS Nano 2022, 16, 14230–14238. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.J.; Johnson, A.; Roggen, D.; Münzenrieder, N. A Flexible Capacitance Strain Sensor with Stitched Contact Terminals. Adv. Mater. Technol. 2023, 8, 2200410. [Google Scholar] [CrossRef]
- Nazari, P.; Bauerle, R.; Zimmermann, J.; Melzer, C.; Schwab, C.; Smith, A.; Kowalsky, W.; Aghassi-Hagmann, J.; Hernandez-Sosa, G.; Lemmer, U. Piezoresistive Free-standing Microfiber Strain Sensor for High-resolution Battery Thickness Monitoring. Adv. Mater. 2023, 35, 2212189. [Google Scholar] [CrossRef]
- Luo, Y.C.; Yu, M.L.; Zhang, Y.T.; Wang, Y.Y.; Long, L.; Tan, H.H.; Li, N.; Xu, L.J.; Xu, J.X. Highly sensitive strain sensor and self-powered triboelectric nanogenerator using a fully physical crosslinked double-network conductive hydrogel. Nano Energy 2022, 104, 107955. [Google Scholar] [CrossRef]
- Wu, R.; Ma, L.; Liu, S.; Patil, A.B.; Hou, C.; Zhang, Y.; Zhang, W.; Yu, R.; Yu, W.; Guo, W.; et al. Fibrous inductance strain sensors for passive inductance textile sensing. Mater. Today Phys. 2020, 15, 100243. [Google Scholar] [CrossRef]
- Shu, Q.; Xu, Z.B.; Liu, S.; Wu, J.P.; Deng, H.X.; Gong, X.L.; Xuan, S.H. Magnetic flexible sensor with tension and bending discriminating detection. Chem. Eng. J. 2022, 433, 134424. [Google Scholar] [CrossRef]
- Ma, S.D.; Tang, J.; Yan, T.; Pan, Z.J. Performance of Flexible Strain Sensors With Different Transition Mechanisms: A Review. IEEE Sens. J. 2022, 22, 7475–7498. [Google Scholar] [CrossRef]
- Migliorini, L.; Santaniello, T.; Falqui, A.; Milani, P. Super-Stretchable Resistive Strain Sensor Based on Ecoflex-Gold Nanocomposites. ACS Appl. Nano Mater. 2023, 6, 8999–9007. [Google Scholar] [CrossRef]
- Cao, H.L.; Chai, S.S.; Tan, Z.F.; Wu, H.; Mao, X.; Wei, L.; Zhou, F.L.; Sun, R.J.; Liu, C.K. Recent Advances in Physical Sensors Based on Electrospinning Technology. ACS Mater. Lett. 2023, 5, 1627–1648. [Google Scholar] [CrossRef]
- Xia, X.D.; Zhao, S.J.; Zhang, J.J.; Fang, C.; Weng, G.J. A unified investigation into the tensile and compressive sensing performance in highly sensitive MWCNT/epoxy nanocomposite strain sensor through loading-dependent tunneling distance. Compos. Sci. Technol. 2022, 230, 109723. [Google Scholar] [CrossRef]
- Yu, Q.H.; Ge, R.; Wen, J.; Du, T.; Zhai, J.Y.; Liu, S.H.; Wang, L.F.; Qin, Y. Highly sensitive strain sensors based on piezotronic tunneling junction. Nat. Commun. 2022, 13, 778. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Huang, G.W.; Liu, Y.; Qu, C.B.; Li, M.; Xiao, H.M. Performance Deficiency Improvement of CNT-Based Strain Sensors by Magnetic-Induced Patterning. ACS Appl. Mater. Interfaces 2023, 15, 5774–5786. [Google Scholar] [CrossRef] [PubMed]
- Veeramuthu, L.; Venkatesan, M.; Benas, J.S.; Cho, C.J.; Lee, C.C.; Lieu, F.K.; Lin, J.H.; Lee, R.H.; Kuo, C.C. Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors. Polymers 2021, 13, 4281. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Kim, Y.; Park, J.H.; Jeong, U. 2D Percolation Design with Conductive Microparticles for Low-Strain Detection in a Stretchable Sensor. Adv. Funct. Mater. 2020, 30, 1908514. [Google Scholar] [CrossRef]
- Yuan, H.Z.; Li, P.X.; Wang, X.Y.; Yu, C.; Wang, X.; Sun, J.T. Stretchable, ultrasensitive strain sensor with high-linearity by constructing crack-based dual conductive network. Chem. Eng. J. 2024, 480, 148102. [Google Scholar] [CrossRef]
- Xue, J.J.; Wu, T.; Dai, Y.Q.; Xia, Y.N. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Su, Z.Q.; Ding, J.W.; Wei, G. Electrospinning: A facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Adv. 2014, 4, 52598–52610. [Google Scholar] [CrossRef]
- Song, W.; Tang, Y.; Qian, C.; Kim, B.J.; Liao, Y.; Yu, D.-G. Electrospinning spinneret: A bridge between the visible world and the invisible nanostructures. Innovation 2023, 4, 100381. [Google Scholar] [CrossRef]
- Gong, X.B.; Jin, C.F.; Liu, X.Y.; Yu, J.Y.; Zhang, S.C.; Ding, B. Scalable Fabrication of Electrospun True-Nanoscale Fiber Membranes for Effective Selective Separation. Nano Lett. 2023, 23, 1044–1051. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.T.; Lin, H.B.; Tian, M.; Li, M.C.; Tian, Y. Development and application of electrospun fiber-based multifunctional sensors. Chem. Eng. J. 2024, 486, 150204. [Google Scholar] [CrossRef]
- Yang, G.; Tang, X.C.; Zhao, G.D.; Li, Y.F.; Ma, C.Q.; Zhuang, X.P.; Yan, J. Highly sensitive, direction-aware, and transparent strain sensor based on oriented electrospun nanofibers for wearable electronic applications. Chem. Eng. J. 2022, 435, 135004. [Google Scholar] [CrossRef]
- Li, D.; Cui, T.R.; Jian, J.M.; Yan, J.L.; Xu, J.D.; Li, X.; Li, Z.; Yan, A.Z.; Chen, Z.K.; Shao, W.C.; et al. Lantern-Inspired On-Skin Helical Interconnects for Epidermal Electronic Sensors. Adv. Funct. Mater. 2023, 33, 2213335. [Google Scholar] [CrossRef]
- Al-Dhahebi, A.M.; Ling, J.K.; Krishnan, S.G.; Yousefzadeh, M.; Elumalai, N.K.; Saheed, M.S.M.; Ramakrishna, S.; Jose, R. Electrospinning research and products: The road and the way forward. Appl. Phys. Rev. 2022, 9, 44. [Google Scholar] [CrossRef]
- Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y. Electrospun nanofibers: New generation materials for advanced applications. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2017, 217, 36–48. [Google Scholar] [CrossRef]
- Wang, Y.; Yokota, T.; Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 2021, 13, 22. [Google Scholar] [CrossRef]
- Gao, Q.; Agarwal, S.; Greiner, A.; Zhang, T. Electrospun fiber-based flexible electronics: Fiber fabrication, device platform, functionality integration and applications. Prog. Mater. Sci. 2023, 137, 101139. [Google Scholar] [CrossRef]
- Selver, E.; Karaca, N.; Onen, A.; Ucar, N.; Altay, P. Morphological/alignment properties of thermoplastic polyurethane nanofiber affected by processing parameters. J. Elastomer Plast. 2021, 53, 769–783. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Xiao, X.; Carlo, A.D.; Yin, J.Y.; Wang, Y.X.; Huang, L.J.; Tang, J.G.; Chen, J. Advances in Wearable Strain Sensors Based on Electrospun Fibers. Adv. Funct. Mater. 2023, 33, 2214265. [Google Scholar] [CrossRef]
- Chen, J.; Rong, F.; Xie, Y.B. Fabrication, Microstructures and Sensor Applications of Highly Ordered Electrospun Nanofibers: A Review. Materials 2023, 16, 3310. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.H.; Schubert, D.W. Highly Sensitive Ultrathin Flexible Thermoplastic Polyurethane/Carbon Black Fibrous Film Strain Sensor with Adjustable Scaffold Networks. Nano-Micro Lett. 2021, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ren, M.N.; Shang, Y.; Li, J.N.; Wang, S.; Zhai, W.; Zheng, G.Q.; Dai, K.; Liu, C.T.; Shen, C.Y. Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins. Compos. Sci. Technol. 2020, 200, 108448. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, W.Y.; Li, C.C.; Zhou, B.Z.; Zhou, Y.F.; Jiang, L.; Wen, S.P.; Zhou, F.L. Fabrication of ultra-high working range strain sensor using carboxyl CNTs coated electrospun TPU assisted with dopamine. Appl. Surf. Sci. 2021, 566, 150705. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.J.; Weng, L.; Jiang, D.W.; Algadi, H.; Qin, Z.F.; Guo, Z.H.; Xu, B.B. Flexible Strain Sensor Enabled by Carbon Nanotubes-Decorated Electrospun TPU Membrane for Human Motion Monitoring. Adv. Mater. Interfaces 2023, 10, 2202292. [Google Scholar] [CrossRef]
- Meng, Y.Y.; Cheng, J.; Zhou, C.L. Superhydrophobic and Stretchable Carbon Nanotube/Thermoplastic Urethane-Based Strain Sensor for Human Motion Detection. ACS Appl. Nano Mater. 2023, 6, 5871–5878. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, L.B.; Chen, X.Y.; Wu, Y.P.; Wang, M.H.; Zhang, J.; Zhao, C.X.; Li, H.; Li, Z.Y.; Wang, P.; et al. High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure. Front. Mater. Sci. 2022, 16, 12. [Google Scholar] [CrossRef]
- Wang, X.; Qu, M.C.; Wu, K.Q.; Schubert, D.W.; Liu, X.H. High sensitive electrospun thermoplastic polyurethane/carbon nanotubes strain sensor fitting by a novel optimization empirical model. Adv. Compos. Hybrid Mater. 2023, 6, 220586. [Google Scholar] [CrossRef]
- Li, C.C.; Zhou, B.Z.; Zhou, Y.F.; Ma, J.W.; Zhou, F.L.; Chen, S.J.; Jerrams, S.; Jiang, L. Carbon Nanotube Coated Fibrous Tubes for Highly Stretchable Strain Sensors Having High Linearity. Nanomaterials 2022, 12, 2458. [Google Scholar] [CrossRef]
- Jia, Y.Y.; Yue, X.Y.; Wang, Y.L.; Yan, C.; Zheng, G.Q.; Dai, K.; Liu, C.T.; Shen, C.Y. Multifunctional stretchable strain sensor based on polydopamine/reduced graphene oxide/electrospun thermoplastic polyurethane fibrous mats for human motion detection and environment monitoring. Compos. Part B-Eng. 2020, 183, 107696. [Google Scholar] [CrossRef]
- Li, Z.Y.; Zhai, W.; Yu, Y.F.; Li, G.J.; Zhan, P.F.; Xu, J.W.; Zheng, G.Q.; Dai, K.; Liu, C.T.; Shen, C.Y. An Ultrasensitive, Durable and Stretchable Strain Sensor with Crack-wrinkle Structure for Human Motion Monitoring. Chin. J. Polym. Sci. 2021, 39, 316–326. [Google Scholar] [CrossRef]
- Kang, L.H.; Ma, J.; Wang, C.; Li, K.C.; Wu, H.Y.; Zhu, M.F. Highly Sensitive and Wide Detection Range Thermoplastic Polyurethane/Graphene Nanoplatelets Multifunctional Strain Sensor with a Porous and Crimped Network Structure. ACS Appl. Mater. Interfaces 2024, 16, 2814–2824. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.Y.; Wang, Y.X.; Mao, X.H.; Yan, X.H.; Zhang, X.T.; Xing, W.; Li, L.X.; Wang, Z.L.; Huang, L.J.; Tang, J.G. Polydopamine/Carbon Black/Carbon Nanofiber/Thermoplastic Polyurethane Composite Nanofiber Strain Sensor with Ultrahigh Loading Rate for Human Activity Monitoring. ACS Appl. Nano Mater. 2024, 7, 11690–11703. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Innocent, M.T.; Tang, N.; Li, R.Y.; Hu, Z.X.; Zhai, M.; Yang, L.J.; Ma, W.J.; Xiang, H.X.; Zhu, M.F. Electromechanical Performance of Strain Sensors Based on Viscoelastic Conductive Composite Polymer Fibers. ACS Appl. Mater. Interfaces 2022, 14, 44832–44840. [Google Scholar] [CrossRef]
- Li, S.S.; Fu, Q.; Pan, C.X. A multi-functional wearable sensor based on carbon nanomaterials reinforced TPU fiber with high sensitivity. J. Alloys Compd. 2022, 927, 167041. [Google Scholar] [CrossRef]
- Xia, J.F.; He, L.; Lu, Z.L.; Liu, L.P.; Song, J.A.; Chen, S.Y.; Wang, Q.S.; Hammad, F.A.; Tian, Y.L. Stretchable and Sensitive Strain Sensors Based on CB/MWCNTs-TPU for Human Motion Capture and Health Monitoring. ACS Appl. Nano Mater. 2023, 6, 9736–9745. [Google Scholar] [CrossRef]
- Ding, Y.R.; Xue, C.H.; Guo, X.J.; Wang, X.; Jia, S.T.; An, Q.F. Flexible Superamphiphobic Film with a 3D Conductive Network for Wearable Strain Sensors in Humid Conditions. ACS Appl. Electron. Mater. 2022, 4, 345–355. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, C.C.; Zhou, B.Z.; He, H.T.; Zhou, Y.F.; Jiang, L.; Zhou, F.L.; Chen, S.J. A flexible strain sensor based on conductive TPU/CNTs-Gr composites. J. Appl. Polym. Sci. 2022, 139, e52475. [Google Scholar] [CrossRef]
- Tang, J.; Wu, Y.T.; Ma, S.D.; Yan, T.; Pan, Z.J. Sensing mechanism of a flexible strain sensor developed directly using electrospun composite nanofiber yarn with ternary carbon nanomaterials. Iscience 2022, 25, 20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.J.; Li, J.C.; Chen, Y.W.; Zou, Z.F.; Zhang, Y.B.; Liu, Y.; Wu, B. Stretchable, flexible, and breathable MXene/dopamine/thermoplastic polyurethane nanofiber membrane with outstanding strain sensing and electromagnetic interference shielding performances. Mater. Today Commun. 2024, 38, 107968. [Google Scholar] [CrossRef]
- Pan, K.L.; Wang, J.; Li, Y.; Lu, X.Y.; Hu, D.C.; Jia, Z.X.; Lin, J. Sandwich-Like Flexible Breathable Strain Sensor with Tunable Thermal Regulation Capability for Human Motion Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 10633–10645. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Sun, J.C.; Liu, X.M.; Jiang, X.D.; Lu, S.W. Highly Sensitive and Stretchable MXene/CNTs/TPU Composite Strain Sensor with Bilayer Conductive Structure for Human Motion Detection. ACS Appl. Mater. Interfaces 2022, 14, 15504–15516. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.N.; Li, J.N.; Zhao, Y.; Zhai, W.; Zhou, K.K.; Yu, Y.F.; Wang, S.; Dai, K.; Liu, C.T.; Shen, C.Y. Highly strain-sensitive and stretchable multilayer conductive composite based on aligned thermoplastic polyurethane fibrous mat for human motion monitoring. Compos. Commun. 2024, 46, 101840. [Google Scholar] [CrossRef]
- Shi, J.R.; Wang, D.; Sarkodie, B.; Wu, D.S.; Mao, Z.; Liu, Z.Y.; Feng, Q.; Xu, W.Z. Strain Sensors for Human Movement Detection Based on Fibrous Membranes Comprising Thermoplastic Polyurethane, Ag Nanoparticles, and Carbon Nanotubes. ACS Appl. Nano Mater. 2024, 7, 2051–2061. [Google Scholar] [CrossRef]
- Zhang, W.X.; Miao, J.L.; Tian, M.W.; Zhang, X.J.; Fan, T.T.; Qu, L.J. Hierarchically interlocked helical conductive yarn enables ultra-stretchable electronics and smart fabrics. Chem. Eng. J. 2023, 462, 142279. [Google Scholar] [CrossRef]
- Wang, X.F.; Liu, J.; Zheng, Y.Q.; Shi, B.; Chen, A.B.; Wang, L.L.; Shen, G.Z. Biocompatible liquid metal coated stretchable electrospinning film for strain sensors monitoring system. Sci. China-Mater. 2022, 65, 2235–2243. [Google Scholar] [CrossRef]
- Uzabakiriho, P.C.; Wang, M.; Wang, K.; Ma, C.; Zhao, G. High-Strength and Extensible Electrospun Yarn for Wearable Electronics. ACS Appl. Mater. Interfaces 2022, 14, 46068–46076. [Google Scholar] [CrossRef]
- Ai, J.W.; Wang, Q.Q.; Li, Z.Q.; Lu, D.X.; Liao, S.Q.; Qiu, Y.Y.; Xia, X.; Wei, Q.F. Highly Stretchable and Fluorescent Visualizable Thermoplastic Polyurethane/Tetraphenylethylene Plied Yarn Strain Sensor with Heterogeneous and Cracked Structure for Human Health Monitoring. ACS Appl. Mater. Interfaces 2023, 16, 1428–1438. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, M.J.; Wang, Y.L.; Zheng, Y.J.; Yin, R.; Liu, H.; Liu, C.T.; Shen, C.Y. Ultra-stretchable, sensitive and breathable electronic skin based on TPU electrospinning fibrous membrane with microcrack structure for human motion monitoring and self-powered application. Chem. Eng. J. 2024, 480, 147899. [Google Scholar] [CrossRef]
- Zhan, P.F.; Zhai, W.; Wei, W.Y.; Ding, P.; Zheng, G.Q.; Dai, K.; Liu, C.T.; Shen, C.Y. Stretchable strain sensor with high sensitivity, large workable range and excellent breathability for wearable electronic skins. Compos. Sci. Technol. 2022, 229, 109720. [Google Scholar] [CrossRef]
- Bozyel, I.; Keser, Y.I.; Gokcen, D. Triple mode and multi-purpose flexible sensor fabrication based on carbon black and thermoplastic polyurethane composite with propolis. Sens. Actuator A-Phys. 2021, 332, 113056. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, H.L.; Sun, Z.J.; Li, S.Q.; Liu, Z.H.; Hu, S.F.; Fu, X.D.; Liu, Q.T.; Wong, C.P. Improved Sensitivity of Flexible Conductive Composites Throughout the Working Strain Range Based on Bioinspired Strain Redistribution. ACS Appl. Polym. Mater. 2022, 4, 1608–1616. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Liu, Q.; Chen, P. Flexible Strain Sensor Based on Carbon Black/Silver Nanoparticles Composite for Human Motion Detection. Materials 2018, 11, 1836. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, S.H.; Zhang, L.; Gao, Y.; Xuan, F.Z. Strain sensing behavior of FDM 3D printed carbon black filled TPU with periodic configurations and flexible substrates. J. Manuf. Process. 2022, 74, 283–295. [Google Scholar] [CrossRef]
- Qin, Y.J.; Qu, M.C.; Pan, Y.M.; Zhang, C.H.; Schubert, D.W. Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing. Compos. Part A-Appl. Sci. Manuf. 2020, 129, 105724. [Google Scholar] [CrossRef]
- Chen, T.J.; Wu, G.Z.; Panahi-Sarmad, M.; Wu, Y.T.; Xu, R.X.; Cao, S.J.; Xiao, X.L. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions. Compos. Sci. Technol. 2022, 227, 109563. [Google Scholar] [CrossRef]
- Qaiser, N.; Al-Modaf, F.; Khan, S.M.; Shaikh, S.F.; El-Atab, N.; Hussain, M.M. A Robust Wearable Point-of-Care CNT-Based Strain Sensor for Wirelessly Monitoring Throat-Related Illnesses. Adv. Funct. Mater. 2021, 31, 2103375. [Google Scholar] [CrossRef]
- Zhu, G.X.; Li, H.; Peng, M.L.; Zhao, G.Y.; Chen, J.W.; Zhu, Y.T. Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor. Carbon 2022, 195, 364–371. [Google Scholar] [CrossRef]
- Zhao, X.X.; Guo, H.; Ding, P.; Zhai, W.; Liu, C.T.; Shen, C.Y.; Dai, K. Hollow-porous fiber-shaped strain sensor with multiple wrinkle-crack microstructure for strain visualization and wind monitoring. Nano Energy 2023, 108, 108197. [Google Scholar] [CrossRef]
- Li, J.Y.; Xiang, D.; Su, P.; Zhao, C.X.; Li, H.; Li, Z.Y.; Wang, B.; Wang, P.; Li, Y.T.; Wu, Y.P. High-performance flexible strain sensors prepared by biaxially stretching conductive polymer composites with a double-layer structure. Mater. Today Commun. 2023, 36, 106548. [Google Scholar] [CrossRef]
- Liu, W.W.; Xue, C.; Long, X.Y.; Ren, Y.; Chen, Z.; Zhang, W. Highly flexible and multifunctional CNTs/TPU fiber strain sensor formed in one-step via wet spinning. J. Alloys Compd. 2023, 948, 169641. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, W.Y.; Zhou, Y.F.; Jiang, L.; Ma, J.W.; Chen, S.J.; Jerrams, S.; Zhou, F.L. Fabrication of high-performance wearable strain sensors by using CNTs-coated electrospun polyurethane nanofibers. J. Mater. Sci. 2020, 55, 12592–12606. [Google Scholar] [CrossRef]
- Xu, X.X.; Yuan, Y.; Zhang, T.; Li, K.; Wang, S.Q.; Liang, C.; Zhu, H.P. A silanized MCNT/TPU-based flexible strain sensor with high stretchability for deformation monitoring of elastomeric isolators for bridges. Constr. Build. Mater. 2022, 338, 127664. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, L.B.; Xu, F.X.; Li, Y.Q.; Harkin-Jones, E.; Wu, Y.P.; Zhao, C.X.; Li, H.; Li, Z.Y.; Wang, P.; et al. Highly Sensitive Flexible Strain Sensor Based on a Double-percolation Structured Elastic Fiber of Carbon Nanotube (CNT)/Styrene Butadiene Styrene (SBS) @ Thermoplastic Polyurethane (TPU) for Human Motion and Tactile Recognition. Appl. Compos. Mater. 2023, 30, 307–322. [Google Scholar] [CrossRef]
- Liu, L.B.; Xiang, D.; Zhang, X.X.; Harkin-Jones, E.; Wang, J.J.; Zhao, C.X.; Li, H.; Li, Z.Y.; Wang, L.; Wang, P.; et al. Highly sensitive flexible strain sensor based on carbon nanotube/styrene butadiene styrene@ thermoplastic polyurethane fiber with a double percolated structure. Polym. Eng. Sci. 2023, 63, 206–218. [Google Scholar] [CrossRef]
- Hou, K.H.; Shi, X.; Yuan, J.E.; Zhang, D.; Bai, Y.S.; Xu, J.; Guo, F.M.; Zhang, Y.J.; Cao, A.Y.; Shang, Y.Y. Stretchable PU@CNT/MXene Fiber Fabricated by External Tension for High Performance Strain Sensor and Supercapacitor. Adv. Mater. Technol. 2023, 8, 11. [Google Scholar] [CrossRef]
- Danová, R.; Olejnik, R.; Slobodian, P.; Matyas, J. The Piezoresistive Highly Elastic Sensor Based on Carbon Nanotubes for the Detection of Breath. Polymers 2020, 12, 713. [Google Scholar] [CrossRef]
- Zhou, Y.; Stewart, R. Highly flexible, durable, UV resistant, and electrically conductive graphene based TPU/textile composite sensor. Polym. Adv. Technol. 2022, 33, 4250–4264. [Google Scholar] [CrossRef]
- Gunasekaran, H.B.; Ponnan, S.; Zheng, Y.L.; Laroui, A.; Wang, H.P.; Wu, L.X.; Wang, J.L. Facile Fabrication of Highly Sensitive Thermoplastic Polyurethane Sensors with Surface- and Interface-Impregnated 3D Conductive Networks. ACS Appl. Mater. Interfaces 2022, 14, 22615–22625. [Google Scholar] [CrossRef]
- Chen, X.X.; Yin, Z.Z.; Deng, Y.T.; Li, Z.H.; Xue, M.S.; Chen, Y.H.; Xie, Y.; Liu, W.Q.; He, P.; Luo, Y.D.; et al. Harsh environment-tolerant and robust superhydrophobic graphene-based composite membrane for wearable strain sensor. Sens. Actuator A-Phys. 2023, 362, 114630. [Google Scholar] [CrossRef]
- Yang, J.L.; Ling, K.; Liu, L.H.; Zeng, X.H.; Xu, X.W.; Li, Z.L.; He, P. Printable and Wearable Graphene-Based Strain Sensor With High Sensitivity for Human Motion Monitoring. IEEE Sens. J. 2022, 22, 13937–13944. [Google Scholar] [CrossRef]
- Li, B.; Luo, J.C.; Huang, X.W.; Lin, L.W.; Wang, L.; Hu, M.J.; Tang, L.C.; Xue, H.G.; Gao, J.F.; Mai, Y.W. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos. Part B-Eng. 2020, 181, 107580. [Google Scholar] [CrossRef]
- Yang, Y.J.; Yi, T.; Liu, Y.; Zhao, H.; Liang, C. Design of a Highly Sensitive Reduced Graphene Oxide/Graphene Oxide@Cellulose Acetate/Thermoplastic Polyurethane Flexible Sensor. Sensors 2022, 22, 3281. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Xiang, D.; Wu, Y.P.; Harkin-Jones, E.; Shen, J.B.; Ye, Y.; Tan, W.; Wang, J.J.; Wang, P.; Zhao, C.X.; et al. High-performance flexible strain sensors based on biaxially stretched conductive polymer composites with carbon nanotubes immobilized on reduced graphene oxide. Compos. Part A-Appl. Sci. Manuf. 2021, 151, 106665. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhang, X.Z.; Xiang, D.; Wu, Y.P.; Zhao, C.X.; Li, H.; Li, Z.Y.; Wang, P.; Li, Y.T. 3D printed high-performance spider web-like flexible strain sensors with directional strain recognition based on conductive polymer composites. Mater. Lett. 2022, 306, 130935. [Google Scholar] [CrossRef]
- Xu, W.H.; Ravichandran, D.; Jambhulkar, S.; Franklin, R.; Zhu, Y.X.; Song, K.N. Bioinspired, Mechanically Robust Chemiresistor for Inline Volatile Organic Compounds Sensing. Adv. Mater. Technol. 2020, 5, 2000440. [Google Scholar] [CrossRef]
- Xiang, D.; Zhang, X.Z.; Han, Z.H.; Zhang, Z.X.; Zhou, Z.X.; Harkin-Jones, E.; Zhang, J.; Luo, X.; Wang, P.; Zhao, C.X.; et al. 3D printed high-performance flexible strain sensors based on carbon nanotube and graphene nanoplatelet filled polymer composites. J. Mater. Sci. 2020, 55, 15769–15786. [Google Scholar] [CrossRef]
- Yang, K.; Yin, F.X.; Xia, D.; Peng, H.F.; Yang, J.Z.; Yuan, W.J. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 2019, 11, 9949–9957. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, Q.S.; Wang, X.; Schubert, D.W.; Liu, X.H. Flexible, conductive, and anisotropic thermoplastic polyurethane/polydopamine/MXene foam for piezoresistive sensors and motion monitoring. Compos. Part A-Appl. Sci. Manuf. 2022, 155, 106838. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Weng, L.; Guo, K.; Guan, L.Z.; Wang, X.M.; Wu, Z.J. Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films. Ceram. Int. 2022, 48, 4977–4985. [Google Scholar] [CrossRef]
- Cui, M.J.; Wu, S.K.; Li, J.N.; Zhao, Y.; Zhai, W.; Dai, K.; Liu, C.T.; Shen, C.Y. An ultrasensitive flexible strain sensor based on CNC/CNTs/MXene/TPU fibrous mat for human motion, sound and visually personalized rehabilitation training monitoring. Compos. Sci. Technol. 2023, 244, 110309. [Google Scholar] [CrossRef]
- Fang, F.Y.; Wang, H.; Wang, H.Q.; Gu, X.F.; Zeng, J.; Wang, Z.X.; Chen, X.D.; Chen, X.; Chen, M.Y. Stretchable MXene/Thermoplastic Polyurethanes Based Strain Sensor Fabricated Using a Combined Electrospinning and Electrostatic Spray Deposition Technique. Micromachines 2021, 12, 252. [Google Scholar] [CrossRef]
- Zhang, D.B.; Yin, R.; Zheng, Y.J.; Li, Q.M.; Liu, H.; Liu, C.T.; Shen, C.Y. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 2022, 438, 135587. [Google Scholar] [CrossRef]
- Wang, H.C.; Zhou, R.C.; Li, D.H.; Zhang, L.R.; Ren, G.Z.; Wang, L.; Liu, J.H.; Wang, D.Y.; Tang, Z.H.; Lu, G.; et al. High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and Ti3C2Tx MXene for the Monitoring of Human Activities. ACS Nano 2021, 15, 9690–9700. [Google Scholar] [CrossRef]
- Cui, X.Y.; Miao, C.J.; Lu, S.W.; Liu, X.M.; Yang, Y.X.; Sun, J.C. Strain Sensors Made of MXene, CNTs, and TPU/PSF Asymmetric Structure Films with Large Tensile Recovery and Applied in Human Health Monitoring. ACS Appl. Mater. Interfaces 2023, 15, 59655–59670. [Google Scholar] [CrossRef]
- Xu, W.J.; Hu, S.Y.; Zhao, Y.; Zhai, W.; Chen, Y.H.; Zheng, G.Q.; Dai, K.; Liu, C.T.; Shen, C.Y. Nacre-inspired tunable strain sensor with synergistic interfacial interaction for sign language interpretation. Nano Energy 2021, 90, 106606. [Google Scholar] [CrossRef]
- Fan, W.J.; Li, C.; Wang, C.R.; Huang, C.X.; Ma, T.T.; Zhou, W.; Wan, Z. Kernmantle structured stretchable strain sensors for biomechanical sensing in amphibious environments. Carbon 2024, 222, 9. [Google Scholar] [CrossRef]
- Liu, Y.M.; Lyu, P.; Hu, J.; Tang, W.Y.; Huang, Y.; Wang, B.S.; Xu, W.L.; Liu, X.; Zhang, R.F. Highly Sensitive and Color Adaptable Polyurethane-Based Strain Sensors with Embedded Silver Nanowires. Adv. Mater. Technol. 2023, 8, 118918. [Google Scholar] [CrossRef]
- Zhang, C.; Ouyang, W.Y.; Zhang, L.; Li, D.C. A dual-mode fiber-shaped flexible capacitive strain sensor fabricated by direct ink writing technology for wearable and implantable health monitoring applications. Microsyst. Nanoeng. 2023, 9, 11. [Google Scholar] [CrossRef]
- Sun, H.Y.; Zettl, J.; Willenbacher, N. Highly conductive and stretchable filament for flexible electronics. Addit. Manuf. 2023, 78, 158. [Google Scholar] [CrossRef]
- Yin, R.; Yang, S.Y.; Li, Q.M.; Zhang, S.D.; Liu, H.; Han, J.; Liu, C.T.; Shen, C.Y. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 2020, 65, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Li, D.W.; Zhao, M.; Mensah, A.R.; Lv, P.F.; Tian, X.J.; Huang, F.L.; Ke, H.Z.; Wei, Q.F. Highly Sensitive and Stretchable CNT-Bridged AgNP Strain Sensor Based on TPU Electrospun Membrane for Human Motion Detection. Adv. Electron. Mater. 2019, 5, 1900241. [Google Scholar] [CrossRef]
- Li, G.; Xue, Y.S.; Peng, H.; Qin, W.F.; Zhou, B.; Zhao, X.; Liu, G.C.; Li, S.Y.; Guo, R.H. Wide strain range and high sensitivity sandwich structure CNTs/AgNWs/ CNTs/TPU strain sensors for human motion detection. Sens. Actuator A-Phys. 2024, 366, 114998. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Yang, Y.; Gu, J.D.; Ke, K.; Yin, B.; Yang, M.B. Aligned wave-like elastomer fibers with robust conductive layers via electroless deposition for stretchable electrode applications. J. Mat. Chem. B 2021, 9, 8801–8808. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Guo, Z.P.; Huang, J.J.; Zhang, S.Y.; Zhang, R.Q.; Gu, S.J.; Xu, J.; Cai, G.M.; Xu, W.L. Highly stretchable conductive elastomeric polyurethane nanofiber composite for human motion detection. Mater. Lett. 2021, 293, 129698. [Google Scholar] [CrossRef]
- Zhang, S.J.; He, Z.L.; Zhou, G.H.; Jung, B.M.; Kim, T.H.; Park, B.J.; Byun, J.H.; Chou, T.W. High conductive free-written thermoplastic polyurethane composite fibers utilized as weight-strain sensors. Compos. Sci. Technol. 2020, 189, 108011. [Google Scholar] [CrossRef]
- Wang, W.; Ma, Y.Y.; Wang, T.Y.; Ding, K.; Zhao, W.; Jiao, L.; Shu, D.K.; Li, C.Y.; Hua, F.G.; Jiang, H.; et al. Double-Layered Conductive Network Design of Flexible Strain Sensors for High Sensitivity and Wide Working Range. ACS Appl. Mater. Interfaces 2022, 14, 36611–36621. [Google Scholar] [CrossRef]
- Sun, H.; Fang, X.D.; Fang, Z.Y.; Zhao, L.B.; Tian, B.; Verma, P.; Maeda, R.; Jiang, Z.D. An ultrasensitive and stretchable strain sensor based on a microcrack structure for motion monitoring. Microsyst. Nanoeng. 2022, 8, 111. [Google Scholar] [CrossRef]
- Zhan, P.F.; Jia, Y.Y.; Zhai, W.; Zheng, G.Q.; Dai, K.; Liu, C.T.; Shen, C.Y. A fibrous flexible strain sensor with Ag nanoparticles and carbon nanotubes for synergetic high sensitivity and large response range. Compos. Part A-Appl. Sci. Manuf. 2023, 167, 107431. [Google Scholar] [CrossRef]
- He, J.Q.; Li, A.; Wang, W.J.; Cui, C.; Jiang, S.; Chen, M.M.; Qin, W.F.; Tang, H.; Guo, R.H. Multifunctional Wearable Device Based on an Antibacterial and Hydrophobic Silver Nanoparticles/Ti3C2Tx MXene/Thermoplastic Polyurethane Fibrous Membrane for Electromagnetic Shielding and Strain Sensing. Ind. Eng. Chem. Res. 2023, 62, 9221–9232. [Google Scholar] [CrossRef]
- Li, J.N.; Zhao, Y.; Zhai, W.; Zhao, X.X.; Dai, K.; Liu, C.T.; Shen, C.Y. Highly aligned electrospun film with wave-like structure for multidirectional strain and visual sensing. Chem. Eng. J. 2024, 485, 149952. [Google Scholar] [CrossRef]
- Wang, H.Z.; Li, R.F.; Cao, Y.J.; Chen, S.; Yuan, B.; Zhu, X.Y.; Cheng, J.S.; Duan, M.H.; Liu, J. Liquid Metal Fibers. Adv. Fiber Mater. 2022, 4, 987–1004. [Google Scholar] [CrossRef]
- Park, Y.G.; Lee, G.Y.; Jang, J.; Yun, S.M.; Kim, E.; Park, J.U. Liquid Metal-Based Soft Electronics for Wearable Healthcare. Adv. Healthc. Mater. 2021, 10, 2002280. [Google Scholar] [CrossRef]
- Peng, Y.; Peng, H.; Li, Y.; Zhou, J.C.; Zhang, J.Y. Thermoplastic and Electrically Conductive Fibers for Highly Stretchable and Sensitive Strain Sensors. ACS Appl. Polym. Mater. 2022, 4, 8795–8802. [Google Scholar] [CrossRef]
- Xiong, Y.; Xiao, J.Y.; Chen, J.; Xu, D.; Zhao, S.S.; Chen, S.B.; Sheng, B. A multifunctional hollow TPU fiber filled with liquid metal exhibiting fast electrothermal deformation and recovery. Soft Matter 2021, 17, 10016–10024. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Chao, M.Y.; Wan, P.B.; Zhang, L.Q. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy 2020, 70, 104560. [Google Scholar] [CrossRef]
- Jia, Z.X.; Li, Z.J.; Ma, S.F.; Zhang, W.Q.; Chen, Y.J.; Luo, Y.F.; Jia, D.M.; Zhong, B.C.; Razal, J.M.; Wang, X.G.; et al. Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci. 2021, 584, 1–10. [Google Scholar] [CrossRef]
- Shen, H.Y.; Ke, H.Z.; Feng, J.D.; Jiang, C.Y.; Wei, Q.F.; Wang, Q.Q. Highly Sensitive and Stretchable c-MWCNTs/PPy Embedded Multidirectional Strain Sensor Based on Double Elastic Fabric for Human Motion Detection. Nanomaterials 2021, 11, 2333. [Google Scholar] [CrossRef]
- Kayser, L.V.; Lipomi, D.J. Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133. [Google Scholar] [CrossRef]
- Dauzon, E.; Lin, Y.B.; Faber, H.; Yengel, E.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A.; Anthopoulos, T.D. Stretchable and Transparent Conductive PEDOT:PSS-Based Electrodes for Organic Photovoltaics and Strain Sensors Applications. Adv. Funct. Mater. 2020, 30, 2001251. [Google Scholar] [CrossRef]
- Shaker, A.; Hassanin, A.H.; Shaalan, N.M.; Hassan, M.A.; Abd El-Moneim, A. Micropatterned flexible strain gauge sensor based on wet electrospun polyurethane/PEDOT: PSS nanofibers. Smart Mater. Struct. 2019, 28, 075029. [Google Scholar] [CrossRef]
- Jin, F.; Lv, D.W.; Shen, W.F.; Song, W.J.; Tan, R.Q. High performance flexible and wearable strain sensor based on rGO and PANI modified Lycra cotton e-textile. Sens. Actuator A-Phys. 2022, 337, 113412. [Google Scholar] [CrossRef]
- Tong, L.; Wang, X.X.; He, X.X.; Nie, G.D.; Zhang, J.; Zhang, B.; Guo, W.Z.; Long, Y.Z. Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor. Nanoscale Res. Lett. 2018, 13, 86. [Google Scholar] [CrossRef]
- Lin, L.; Choi, Y.; Chen, T.; Kim, H.; Lee, K.S.; Kang, J.M.; Lyu, L.; Gao, J.F.; Piao, Y. Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring. Chem. Eng. J. 2021, 419, 129513. [Google Scholar] [CrossRef]
- Peng, M.L.; Li, X.; Liu, Y.F.; Chen, J.W.; Chang, X.H.; Zhu, Y.T. Flexible multisensory sensor based on hierarchically porous ionic liquids/ thermoplastic polyurethane composites. Appl. Surf. Sci. 2023, 610, 155516. [Google Scholar] [CrossRef]
- Xiao, J.J.; He, J.Q.; Wang, W.J.; Chen, M.M.; Guo, R.H. A multifunctional flexible strain sensor based on an excellent sensing performance PDMS-MXene@CNT/TPU nanofiber membrane with hydrophobic and photothermal conversion performance. New J. Chem. 2023, 47, 19265–19275. [Google Scholar] [CrossRef]
- Jiang, N.; Chang, X.H.; Hu, D.W.; Chen, L.R.; Wang, Y.P.; Chen, J.W.; Zhu, Y.T. Flexible, transparent, and antibacterial ionogels toward highly sensitive strain and temperature sensors. Chem. Eng. J. 2021, 424, 130418. [Google Scholar] [CrossRef]
- Wang, F.; Chen, J.W.; Cui, X.H.; Liu, X.N.; Chang, X.H.; Zhu, Y.T. Wearable Ionogel-Based Fibers for Strain Sensors with Ultrawide Linear Response and Temperature Sensors Insensitive to Strain. ACS Appl. Mater. Interfaces 2022, 14, 30268–30278. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Lin, Z.F.; Wang, X.P.; Wang, Z.Y.; Sun, Z.L. Mechanically Interlocked Hydrogel-Elastomer Strain Sensor with Robust Interface and Enhanced Water-Retention Capacity. Gels 2022, 8, 625. [Google Scholar] [CrossRef] [PubMed]
- Palicpic, C.M.; Khadka, R.; Yim, J.H. An effectively enhanced vapor phase hybridized conductive polymer based on graphene oxide and glycerol influence for strain sensor applications. New J. Chem. 2022, 46, 22162–22170. [Google Scholar] [CrossRef]
- Qu, M.N.; Lv, Y.Q.; Ge, J.W.; Zhang, B.; Wu, Y.X.; Shen, L.; Liu, Q.H.; Yan, M.; He, J.M. Hydrophobic and multifunctional strain, pressure and temperature sensor based on TPU/SiO2-ILs ionogel for human motion monitoring, liquid drop monitoring, underwater applications. Colloid Surf. A-Physicochem. Eng. Asp. 2023, 664, 131103. [Google Scholar] [CrossRef]
- Sun, J.Y.; Xiu, K.H.; Wang, Z.Y.; Hu, N.; Zhao, L.B.; Zhu, H.; Kong, F.Z.; Xiao, J.L.; Cheng, L.J.; Bi, X.Y. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome. Nano Energy 2023, 108, 108215. [Google Scholar] [CrossRef]
Process Parameter | Description | Effect on Morphological Properties |
---|---|---|
Nozzle Axis Type | Single Axis Nozzle | Uniform diameters, limited control over orientation and porosity |
Coaxial Nozzle | Increases nanofiber diameter, more porous structure, enhanced control over morphology | |
Collector Type | Rotating Cylinder Collector | Larger diameters, less effective in fiber alignment |
Rotational Wire Collector | Thinner, more oriented fibers, better alignment due to smaller contact area and higher rotation speeds | |
Collector Speed | Low Speed | Random fiber orientations, limited impact on diameter |
High Speed (2000 rpm) | Improved orientation, increased fiber diameter due to relaxation post-spinning, optimal for aligned fiber applications | |
Filler Types | Inorganic Fillers (e.g., Salt Particles) | Thinnest, highly oriented fibers, enhanced alignment |
Organic Fillers (e.g., Polystyrene) | Modified morphology, impact on mechanical properties, and surface characteristics | |
Fiber Diameter | Increases with Collector Speed | Larger diameters at higher speeds due to relaxation |
Increases with Coaxial Nozzle | Thicker fibers compared to single-axis nozzles | |
Fiber Orientation | Enhanced with Higher Rotational Speeds | Speeds up to 2000 rpm needed for significant orientation, critical for specific applications |
Better with Wire Collector | Superior alignment compared to cylindrical collectors | |
Surface Porous Structure | Coaxial Technique | Highly porous surfaces with low boiling point solvents for core, formation of hollow and porous fibers |
Influenced by Solvent Properties | Control porosity and surface characteristics based on solvent boiling points |
Conductive Material | Materials | Structure | Sensitivity (at Strain %) | Sensing Range (%) | Response/Recovery Time (ms) | Durability (Cycles at Strain %) | Ref |
---|---|---|---|---|---|---|---|
0D CB | CB/TPU | membrane | 8962.7 (160) | 0–160 | 60 | 10,000 (10) | [64] |
CB/TPU/Ecoflex | sandwich | 3186.4 (225) | 0.5–225 | 70 | 5000 (40) | [65] | |
1D CNTs | DATPU/CNTs | membrane | 1200 (710) | 0–710 | 300 | 15,000 (100) | [66] |
CNTs/DA/TPU | membrane | 10,528.53 (200) | 0–200 | 188/211 | 300 (10) | [67] | |
CNTs/F-TPU | mat | 2.86 (150) | 0–550 | 110 | 5000 (30) | [68] | |
CNTs/TPU@SBS | double-percolation | 32,411 (100) | 0.2–100 | 214 | 500 (10) | [69] | |
CNTs/TPU | membrane | 1571 (400) | 0–400 | - | 10,000 (10) | [70] | |
TPU/CNTs | tube | 57 (760) | 2–760 | 45 | 10,000 (200) | [71] | |
2D Gr | PDA/rGO/TPU | mat | 6583 (150) | 0–150 | 100 | 9000 (50) | [72] |
GNPs/TPU/PDMS | crack-wrinkle | 750 (24) | 0.1–24 | 90 | 20,000 (5) | [73] | |
TPU/GNPs | porous-convoluted | 4047.5 (350) | 0–350 | - | 10,000 (50) | [74] | |
multidimensionality | PDA/ CB/CNF/TPU | membrane | 312.4 (285) | 0.12−285 | 287/457 | 1000 (50) | [75] |
TPU/CB-CNTs | fiber | 6.0 (3.0) | 0–280.5 | 248 | 2000 (5) | [76] | |
PDMS/(CB+CNTs)/TPU | mat | 49,863.5 (437.9) | 0–437.9 | - | 1300 (50) | [77] | |
CB/ MWCNTs/TPU | membrane | 5705.53 (150) | 0–150 | 220 | 6000 (7) | [78] | |
TPU/SCB@CNTs/F-SiO2 | film | 60.42 (100) | 0–100 | 75/100 | 1000 (70) | [79] | |
TPU/CNTs-Gr | membrane | 217 (172) | 0–172 | - | 10,000 (30) | [80] | |
CB/CNTs/GR/TPU | yarn | 17.74 (100) | 0–227 | 220 | 5000 (50) | [81] | |
MXene | MXene/PDA/TPU | membrane | 2600 (200) | 0.1–200 | 77/186 | 1000 (50) | [82] |
TPU/MXene/BNNS | sandwich | 2080.9 (100) | 0–100 | - | 2500 (50) | [83] | |
MXene/CNTs/TPU | bilayer-conductive | 2911 (330) | 0–330 | 80 | 2600 (50) | [84] | |
MXene-CNTs/TPU/Ecoflex | sandwich | 1719.2 (251) | 0.1–251 | 50 | 10,000 (50) | [85] | |
Ag | TPU/Ag/CNTs | membrane | 6834 (604) | 0.1–604 | 122/164 | 1000 (50) | [86] |
AgNWs/MXene/TPU | yarn | 1.7 (1000) | 0–1000 | 100 | 3000 (100) | [87] | |
LM | LM/TPU | membrane | 0.2 (200) | 0–200 | 290/360 | 9000 (75) | [88] |
TPU/LM/NFs | yarn | 6 (200) | 0–548 | - | 1000 (50) | [89] | |
conductive polymer | PDA/PPy/TPU-TPE | fiber | 58.9 (184) | 0–184 | 58.82/117.64 | 2000 (20) | [90] |
MWCNT/PEDOT:PSS/TPU | membrane | 6008.3 (680) | 0.5–680 | 200 | 6000 (50) | [91] | |
rGO/PANI/TPU | mat | 3000.2 (300) | 0.1–300 | 90 | 10,000 (40) | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Tang, W.; Xu, T.; Zhao, W.; Zhang, J.; Bai, C. Flexible Strain Sensors Based on Thermoplastic Polyurethane Fabricated by Electrospinning: A Review. Sensors 2024, 24, 4793. https://doi.org/10.3390/s24154793
Zhou Z, Tang W, Xu T, Zhao W, Zhang J, Bai C. Flexible Strain Sensors Based on Thermoplastic Polyurethane Fabricated by Electrospinning: A Review. Sensors. 2024; 24(15):4793. https://doi.org/10.3390/s24154793
Chicago/Turabian StyleZhou, Zhiyuan, Weirui Tang, Teer Xu, Wuyang Zhao, Jingjing Zhang, and Chuanwu Bai. 2024. "Flexible Strain Sensors Based on Thermoplastic Polyurethane Fabricated by Electrospinning: A Review" Sensors 24, no. 15: 4793. https://doi.org/10.3390/s24154793
APA StyleZhou, Z., Tang, W., Xu, T., Zhao, W., Zhang, J., & Bai, C. (2024). Flexible Strain Sensors Based on Thermoplastic Polyurethane Fabricated by Electrospinning: A Review. Sensors, 24(15), 4793. https://doi.org/10.3390/s24154793