Smart Industrial Internet of Things Framework for Composites Manufacturing
Abstract
:1. Introduction
State-of-the-Art in Composites Manufacturing
2. AIoT Framework for Composites Manufacturing
Proof-of-Concept Implementation
- A sensor array of temperature, heat flux, dielectric, and flow sensors for data acquisition from production machines and products being made;
- An IoT platform for sensor data acquisition (DAQ), synchronisation, integration, and management;
- A real-time resin cure monitoring and visualisation tool;
- An AI-based resin cure forecasting tool.
3. Case Study: Utilising the Proof-of-Concept Implementation for the Resin Infusion Process
3.1. Resin Cure Monitoring and Visualisation
3.2. AI-Based Resin Cure Forecasting
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, A.; Chakraborty, D.; Law, A. Artificial intelligence in Internet of things. CAAI Trans. Intell. Technol. 2018, 3, 208–218. [Google Scholar] [CrossRef]
- Lai, Y.H.; Wu, T.C.; Lai, C.F.; Yang, L.T.; Zhou, X. Cognitive Optimal-Setting Control of AIoT Industrial Applications with Deep Reinforcement Learning. IEEE Trans. Ind. Inform. 2021, 17, 2116–2123. [Google Scholar] [CrossRef]
- Matin, A.; Islam, M.R.; Wang, X.; Huo, H.; Xu, G. AIoT for sustainable manufacturing: Overview, challenges, and opportunities. Internet Things 2023, 24, 100901. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Pawar, A.B.; Ghumbre, S. A survey on IoT applications, security challenges and counter measures. In Proceedings of the International Conference on Computing, Analytics and Security Trends (CAST), Pune, India, 19–21 December 2016; pp. 294–299. [Google Scholar]
- Bamunuarachchi, D.; Georgakopoulos, D.; Banerjee, A.; Jayaraman, P.P. Digital Twins Supporting Efficient Digital Industrial Transformation. Sensors 2021, 21, 6829. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Tretiak, I.; Hallett, S.R.; Belnoue, J.P.H. Virtual data-driven optimisation for zero defect composites manufacture. Mater. Des. 2024, 241, 112934. [Google Scholar] [CrossRef]
- Cassola, S.; Duhovic, M.; Schmidt, T.; May, D. Machine learning for polymer composites process simulation—A review. Compos. Part B Eng. 2022, 246, 110208. [Google Scholar] [CrossRef]
- Abdoli, H.; Hermann, T.; Bickerton, S. A novel, fast and clean 3D permeability measurement method for multi-layer textiles and fabrics. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107167. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.; Bwar, K.H.; Eisenbart, B.; Lu, G.; Belaadi, A.; Fox, B.; Chai, B.X. Application of machine learning for composite moulding process modelling. Compos. Commun. 2024, 48, 101960. [Google Scholar] [CrossRef]
- Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Wang, Y.; Bwar, K.H.; Zhang, K. Review of Approaches to Minimise the Cost of Simulation-Based Optimisation for Liquid Composite Moulding Processes. Materials 2023, 16, 7580. [Google Scholar] [CrossRef] [PubMed]
- Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Blythe, A.; Blanchard, P.; Dahl, J. A novel heuristic optimisation framework for radial injection configuration for the resin transfer moulding process. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107352. [Google Scholar] [CrossRef]
- Belnoue, J.P.H.; Hallett, S.R. Process models: A cornerstone to composites 4.0. Compos. Part B Eng. 2024, 283, 111621. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Sun, X.; Tretiak, I.; Valverde, M.A.; Kratz, J. Automatic process control of an automated fibre placement machine. Compos. Part A Appl. Sci. Manuf. 2023, 168, 107465. [Google Scholar] [CrossRef]
- Rocha, H.; Semprimoschnig, C.; Nunes, J.P. Sensors for process and structural health monitoring of aerospace composites: A review. Eng. Struct. 2021, 237, 112231. [Google Scholar] [CrossRef]
- Humfeld, K.D.; Gu, D.; Butler, G.A.; Nelson, K.; Zobeiry, N. A machine learning framework for real-time inverse modeling and multi-objective process optimization of composites for active manufacturing control. Compos. Part B Eng. 2021, 223, 109150. [Google Scholar] [CrossRef]
- Iyer, K.; Hagnell, M.K.; Åkermo, M. The multi-objective optimization framework: A step towards minimizing life-cycle costs and energy consumption of carbon fibre automotive structures. Compos. Part B Eng. 2024, 271, 111158. [Google Scholar] [CrossRef]
- Song, Y.; Qu, Z.; Liao, H.; Ai, S. Material twins generation of woven polymer composites based on ResL-U-Net convolutional neural networks. Compos. Struct. 2023, 307, 116672. [Google Scholar] [CrossRef]
- Zhu, Y.; He, J.; Wang, Z.; Xiong, Y.; Tang, Y. Simulation-based data-driven design of digital short fibre reinforced composites. Compos. Commun. 2023, 40, 101567. [Google Scholar] [CrossRef]
- Amini Niaki, S.; Haghighat, E.; Campbell, T.; Poursartip, A.; Vaziri, R. Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture. Comput. Methods Appl. Mech. Eng. 2021, 384, 113959. [Google Scholar] [CrossRef]
- Djavadifar, A.; Graham-Knight, J.B.; Körber, M.; Lasserre, P.; Najjaran, H. Automated visual detection of geometrical defects in composite manufacturing processes using deep convolutional neural networks. J. Intell. Manuf. 2022, 33, 2257–2275. [Google Scholar] [CrossRef]
- Mezeix, L.; Rivas, A.S.; Relandeau, A.; Bouvet, C. A New Method to Predict Damage to Composite Structures Using Convolutional Neural Networks. Materials 2023, 16, 7213. [Google Scholar] [CrossRef]
- Syerko, E.; Schmidt, T.; May, D.; Binetruy, C.; Advani, S.G.; Lomov, S.; Silva, L.; Abaimov, S.; Aissa, N.; Akhatov, I.; et al. Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107397. [Google Scholar] [CrossRef]
- Bodaghi, M.; Vanaerschot, A.; Lomov, S.V.; Correia, N.C. On the variability of mesoscale permeability of a 2/2 twill carbon fabric induced by variability of the internal geometry. Compos. Part A Appl. Sci. Manuf. 2017, 101, 394–407. [Google Scholar] [CrossRef]
- Stieber, S.; Schröter, N.; Fauster, E.; Bender, M.; Schiendorfer, A.; Reif, W. Inferring material properties from FRP processes via sim-to-real learning. Int. J. Adv. Manuf. Technol. 2023, 128, 1517–1533. [Google Scholar] [CrossRef]
- Bodaghi, M.; Lomov, S.V.; Simacek, P.; Correia, N.C.; Advani, S.G. On the variability of permeability induced by reinforcement distortions and dual scale flow in liquid composite moulding: A review. Compos. Part A Appl. Sci. Manuf. 2019, 120, 188–210. [Google Scholar] [CrossRef]
- Struzziero, G.; Teuwen, J.J.E.; Skordos, A.A. Numerical optimisation of thermoset composites manufacturing processes: A review. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105499. [Google Scholar] [CrossRef]
- Synthesites Sensors. Synthesites. 2023. Available online: https://www.synthesites.com/index.php (accessed on 1 June 2024).
- Fonseca, G.E.; Dubé, M.A.; Penlidis, A. A critical overview of sensors for monitoring polymerizations. Macromol. React. Eng. 2009, 3, 327–373. [Google Scholar] [CrossRef]
- Di Fratta, C.; Sun, Y.; Causse, P.; Trochu, F. A dimensionless characteristic number for process selection and mold design in composites manufacturing: Part I—Theory. J. Compos. Sci. 2020, 4, 11. [Google Scholar] [CrossRef]
- Capricho, J.C.; Liao, T.-Y.; Chai, B.X.; Al-Qatatsheh, A.; Vongsvivut, J.; Kingshott, P.; Juodkazis, S.; Fox, B.L.; Hameed, N. Magnetically Cured Macroradical Epoxy as Antimicrobial Coating. Chem. Asian J. 2023, 18, e202300237. [Google Scholar] [CrossRef]
- Hall, M.; Zeng, X.; Shelley, T.; Schubel, P. In Situ Thermoset Cure Sensing: A Review of Correlation Methods. Polymers 2022, 14, 2978. [Google Scholar] [CrossRef] [PubMed]
- Torres, M. Parameters’ monitoring and in-situ instrumentation for resin transfer moulding: A review. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105500. [Google Scholar] [CrossRef]
- Karkanas, P.I.; Partridge, I.K. Cure modeling and monitoring of epoxy/amine resin systems. I. Cure kinetics modeling. J. Appl. Polym. Sci. 2000, 77, 1419–1431. [Google Scholar] [CrossRef]
- Karkanas, P.I.; Partridge, I.K. Cure modeling and monitoring of epoxy/amine resin systems. II. Network formation and chemoviscosity modeling. J. Appl. Polym. Sci. 2000, 77, 2178–2188. [Google Scholar] [CrossRef]
- Bajzek, T.J. Thermocouples: A sensor for measuring temperature. IEEE Instrum. Meas. Mag. 2005, 8, 35–40. [Google Scholar] [CrossRef]
- FHF06 Heat Flux Sensor. Hukseflux. 2023. Available online: https://www.hukseflux.com/products/heat-flux-sensors/heat-flux-sensors/fhf06-heat-flux-sensor (accessed on 1 June 2024).
- MQTT: The Standard for IoT Messaging. MQTT. 2024. Available online: https://mqtt.org/ (accessed on 1 June 2024).
- Azure Database for PostgreSQL. Microsoft. 2024. Available online: https://azure.microsoft.com/en-au/products/postgresql (accessed on 1 June 2024).
- Power BI. Microsoft. 2024. Available online: https://www.microsoft.com/en-au/power-platform/products/power-bi/ (accessed on 1 June 2024).
- HexFlow RTM6/RTM6-2 Product Data Sheet. Published by: Hexcel. [Datasheet]. 2024. Available online: https://www.hexcel.com/user_area/content_media/raw/RTM6_RTM62_HexFlow_DataSheet.pdf (accessed on 1 June 2024).
- Nichols, J.A.; Herbert Chan, H.W.; Baker, M.A.B. Machine learning: Applications of artificial intelligence to imaging and diagnosis. Biophys. Rev. 2019, 11, 111–118. [Google Scholar] [CrossRef]
- Rong, C.; Zhou, L.; Zhang, B.; Xuan, F.-Z. Machine learning for mechanics prediction of 2D MXene-based aerogels. Compos. Commun. 2023, 38, 101474. [Google Scholar] [CrossRef]
- Elmaz, F.; Eyckerman, R.; Casteels, W.; Latré, S.; Hellinckx, P. CNN-LSTM architecture for predictive indoor temperature modeling. Build. Environ. 2021, 206, 108327. [Google Scholar] [CrossRef]
- Anjali, T.; Chandini, K.; Anoop, K.; Lajish, V.L. Temperature Prediction using Machine Learning Approaches. In Proceedings of the 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 5–6 July 2019; pp. 1264–1268. [Google Scholar]
- Smith, B.A.; Hoogenboom, G.; McClendon, R.W. Artificial neural networks for automated year-round temperature prediction. Comput. Electron. Agric. 2009, 68, 52–61. [Google Scholar] [CrossRef]
- Kreuzer, D.; Munz, M.; Schlüter, S. Short-term temperature forecasts using a convolutional neural network—An application to different weather stations in Germany. Mach. Learn. Appl. 2020, 2, 100007. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Schoenholz, C.; Zobeiry, N. An Accelerated Process Optimization Method to Minimize Deformations in Composites Using Theory-guided Probabilistic Machine Learning. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107842. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, B.X.; Gunaratne, M.; Ravandi, M.; Wang, J.; Dharmawickrema, T.; Di Pietro, A.; Jin, J.; Georgakopoulos, D. Smart Industrial Internet of Things Framework for Composites Manufacturing. Sensors 2024, 24, 4852. https://doi.org/10.3390/s24154852
Chai BX, Gunaratne M, Ravandi M, Wang J, Dharmawickrema T, Di Pietro A, Jin J, Georgakopoulos D. Smart Industrial Internet of Things Framework for Composites Manufacturing. Sensors. 2024; 24(15):4852. https://doi.org/10.3390/s24154852
Chicago/Turabian StyleChai, Boon Xian, Maheshi Gunaratne, Mohammad Ravandi, Jinze Wang, Tharun Dharmawickrema, Adriano Di Pietro, Jiong Jin, and Dimitrios Georgakopoulos. 2024. "Smart Industrial Internet of Things Framework for Composites Manufacturing" Sensors 24, no. 15: 4852. https://doi.org/10.3390/s24154852
APA StyleChai, B. X., Gunaratne, M., Ravandi, M., Wang, J., Dharmawickrema, T., Di Pietro, A., Jin, J., & Georgakopoulos, D. (2024). Smart Industrial Internet of Things Framework for Composites Manufacturing. Sensors, 24(15), 4852. https://doi.org/10.3390/s24154852