Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting
Abstract
:1. Introduction
2. The ALC1605 Experiment: Sensors and Raw Data Quality
Data Processing Strategy
3. Methodology
3.1. Hybrid Twin Approach
3.1.1. Physics-Based Model
3.1.2. Data-Driven Model
- Purple sensor: Positioned in a region extremely distant from the heaters, where accurately characterizing the rock’s conductivity is crucial.
- Orange sensor: Located in a region distant from the heaters, where the drilling of the tunnel has affected the rock’s physical properties.
- Blue sensor: Situated near the tunnel walls, where the interaction between the air and the heaters poses a modeling challenge.
- Green sensor: Placed adjacent to the gallery, influenced by external temperatures and their interplay with the tunnel environment.
- (a)
- The length of the temperature sequence for training and validation was fixed at 16 elements.
- (b)
- The dimensionality of the hidden state in the LSTM layer was set to 2.
- (c)
- The number of neurons in the dense layer was configured to 16.
- (d)
- regularization with a coefficient of was applied to the weights and biases.
- (e)
- The batch size utilized during training was 128.
4. Experimental Results
5. Application Usage
5.1. Sensor Diagnosis
5.2. Domain Completion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, G.; Pfingsten, W. Data-driven machine learning for disposal of high-level nuclear waste: A review. Ann. Nucl. Energy 2023, 180, 109452. [Google Scholar] [CrossRef]
- Hu, G.; Schoenball, M.; Pfingsten, W. Machine learning-assisted heat transport modeling for full-scale emplacement experiment at Mont Terri underground laboratory. Int. J. Heat Mass Transf. 2023, 213, 124290. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1992; p. 527. [Google Scholar]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications; Springer: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Lexington, KY, USA, 2018. [Google Scholar]
- Goodfellow, I.J.; Bengio, Y.; Courville, A.; Goodfellow, I.J.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Gers, F.A.; Schmidhuber, J. LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Trans. Neural Netw. 2001, 12, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, J.C.B. Deep Learning for Time-Series Analysis. arXiv 2017, arXiv:1701.01887. [Google Scholar]
- Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2018, 33, 917–963. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar] [CrossRef]
- Murphy, K.P. Probabilistic Machine Learning. In Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2022; pp. 1–272. [Google Scholar]
- Chinesta, F.; Cueto, E.; Abisset-Chavanne, E.; Duval, J.L.; Khaldi, F.E. Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data. Arch. Comput. Methods Eng. 2020, 27, 105–134. [Google Scholar] [CrossRef]
- Cangialosi, C. Performances of Raman and Brillouin Fiber-Based Sensing of Temperature and Strain in Harsh Environments. Ph.D. Thesis, Université de Lyon, Lyon, France, 2016. [Google Scholar]
- Delepine-Lesoille, S.; Girard, S.; Landolt, M.; Bertrand, J.; Planes, I.; Boukenter, A.; Marin, E.; Humbert, G.; Leparmentier, S.; Auguste, J.L.; et al. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes. Sensors 2017, 17, 1377. [Google Scholar] [CrossRef]
- Planes, I. Performances des capteurs à fibres optiques basés sur les diffusions Brillouin, Rayleigh et Raman en environnement sévère. Ph.D. Thesis, Université de Lyon, Lyon, France, 2019. [Google Scholar]
- Indyk, P.; Vakilian, A.; Yuan, Y. Learning-Based Low-Rank Approximations. In Proceedings of the 2019 Annual Conference on Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- la Torre, F.D.; Black, M.J. A Framework for Robust Subspace Learning. Int. J. Comput. Vis. 2003, 54, 117–142. [Google Scholar] [CrossRef]
- Vidal, R.; Ma, Y.; Sastry, S.S. Robust Principal Component Analysis? Interdiscip. Appl. Math. 2009, 40, 63–122. [Google Scholar] [CrossRef]
- Cai, J.F.; Candès, E.J.; Shen, Z. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM J. Optim. 2008, 20, 1956–1982. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2010, 3, 1–122. [Google Scholar] [CrossRef]
- Xu, H.; Rutqvist, J.; Plúa, C.; Armand, G.; Birkholzer, J. Modeling of thermal pressurization in tight claystone using sequential THM coupling: Benchmarking and validation against in situ heating experiments in COx claystone. Tunn. Undergr. Space Technol. 2020, 103, 103428. [Google Scholar] [CrossRef]
- Mahoney, M.W.; Drineas, P. CUR matrix decompositions for improved data analysis. Proc. Natl. Acad. Sci. USA 2009, 106, 697–702. [Google Scholar] [CrossRef]
- Ibáñez, R.; Abisset-Chavanne, E.; Ammar, A.; González, D.; Cueto, E.; Huerta, A.; Duval, J.L.; Chinesta, F. A multidimensional data-driven sparse identification technique: The sparse proper generalized decomposition. Complexity 2018, 2018, 5608286. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on Computer Vision—EVVC 2016, Amsterdam, The Netherlands, 11–14 October 2016; pp. 630–645. [Google Scholar] [CrossRef]
- Blaud, P.C.; Chevrel, P.; Claveau, F.; Haurant, P.; Mouraud, A. ResNet and PolyNet Based Identification and (MPC) Control of Dynamical Systems: A Promising Way. IEEE Access 2023, 11, 20657–20672. [Google Scholar] [CrossRef]
- Atkinson, K.E. An Introduction to Numerical Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1989; p. 693. [Google Scholar]
- Ascher, U.M.; Petzold, L.R. Computer methods for ordinary differential equations and differential-algebraic equations. In Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1998; pp. 3–305. [Google Scholar] [CrossRef]
- Ghnatios, C.; Kestelyn, X.; Denis, G.; Champaney, V.; Chinesta, F. Learning Data-Driven Stable Corrections of Dynamical Systems—Application to the Simulation of the Top-Oil Temperature Evolution of a Power Transformer. Energies 2023, 16, 5790. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Chatterjee, A. An introduction to the proper orthogonal decomposition. Curr. Sci. 2000, 78, 808–817. [Google Scholar]
- Berkooz, G.; Holmes, P.; Lumley, J.L. The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows. Annu. Rev. Fluid Mech. 2003, 25, 539–575. [Google Scholar] [CrossRef]
Material | Thermal Conductivity [] | Specific Heat Capacity [] | Density [] |
---|---|---|---|
Steel (sleeves) | 50 | 460 | 7800 |
MREA | 0.89 | 2560 | 1160 |
COx claystone | 2.05 (horizontal) 1.33 (vertical) | 800 | 2400 |
ZFC | 1.64 (horizontal) 1.06 (vertical) | 800 | 2400 |
ZFD | 1.99 (horizontal) 1.29 (vertical) | 800 | 2400 |
Layer | Building Blocks | Activation |
---|---|---|
1 | LSTM layer, hidden size = 2 | sigmoid + tanh |
2 | Flatten | no activation |
3 | Dense layer, #neurons = 16 | tanh |
4 | Dense layer, #neurons = sequence size | ReLU |
5 | Lambda layer returning − 1 × inputs | no activation |
Layer | Building Blocks | Activation |
---|---|---|
1 | LSTM layer, hidden size = 2 | sigmoid + tanh |
2 | Flatten | no activation |
3 | Dense layer, #neurons = 16 | tanh |
4 | Dense layer, #neurons = sequence size | linear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, D.; Thomas, A.E.; Cotton, J.; Bertrand, J.; Chinesta, F. Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting. Sensors 2024, 24, 4931. https://doi.org/10.3390/s24154931
Muñoz D, Thomas AE, Cotton J, Bertrand J, Chinesta F. Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting. Sensors. 2024; 24(15):4931. https://doi.org/10.3390/s24154931
Chicago/Turabian StyleMuñoz, David, Anoop Ebey Thomas, Julien Cotton, Johan Bertrand, and Francisco Chinesta. 2024. "Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting" Sensors 24, no. 15: 4931. https://doi.org/10.3390/s24154931
APA StyleMuñoz, D., Thomas, A. E., Cotton, J., Bertrand, J., & Chinesta, F. (2024). Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting. Sensors, 24(15), 4931. https://doi.org/10.3390/s24154931