Experimental and Density Functional Theory Simulation Research on PdO–SnO2 Nanosheet Ethanol Gas Sensors
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation of the Gas-Sensing Materials
2.2. Characterization
2.3. Fabrication and Measurement of Gas Sensors
2.4. Density Functional Theory Calculations
3. Results and Discussion
3.1. Characterization
3.2. Gas-Sensing Properties
3.3. DFT Calculation Results
- According to the adsorption energy in Table 3, the ethanol adsorption strength was stronger on the Sn5c atom (Eads ≈ −2 eV) than on the Pd3c atom (Eads ≈ −1.5 eV). However, comparing the optimal adsorption configurations on two surfaces, the transferred electrons were increased by 0.115 e on the PdO(101)–SnO2(110) surface, indicating a higher reducing property of ethanol with the assistance of PdO. Furthermore, for the weak adsorption configurations, the adsorption energy was more negative on the PdO(101)–SnO2(110) surface, revealing the enhancement of the adsorption of the H-CH3 atoms by PdO.
- On the PdO(101) surface, it was found that the adsorption sites were continuously distributed since every atom of PdO can act as an adsorption site. On the SnO2(110) surface, the Sn5c and O2c(SnO2) atoms acted as the adsorption sites with a relatively sparse distribution. Therefore, PdO can facilitate ethanol adsorption through numerous adsorption sites.
3.4. Gas-Sensing Mechanism
- PdO has a catalyst effect on ethanol oxidation [15,17]. Specifically, PdO can enhance the amount of oxygen adsorbed on the SnO2 surface through the spillover effect [52,53,54], thereby enhancing the gas-sensing reaction on the SnO2 surface. In addition, PdO can also lower the chemical reaction barrier [55].
- The heterostructure can enhance the gas-sensing performance [56,57]. Due to the high catalytic performance of PdO, the gas-sensing reaction can cause significant changes in PdO’s hole concentration and Fermi level, which can be reflected in the thickness change of the depletion layer and the resistance at the heterojunction.
- According to the DFT calculation results, PdO has the following enhancement effects: First, it enhances the charge transfer amount after adsorption and increases the reducing performance of ethanol. Second, it enhances the adsorption strength of H-CH3 atoms on the material surface. Third, PdO has a large number of continuous adsorption sites, increasing the adsorption probability of ethanol. Furthermore, we propose a possible synergistic effect. Because the adsorption sites are continuous on the PdO surface, the ethanol molecule can move to adjacent adsorption sites through a small amount of energy exchange with the environment. Therefore, ethanol molecules exhibit a certain degree of mobility on the PdO surface. Through this mobility, the ethanol molecule may move to the interface between PdO and SnO2, react with the spillover oxygen, and thereby change the resistance of SnO2. This inferred process can be viewed as a synergistic effect.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Logsdon, J.E. Ethanol. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Thu, D.T.; Liu, Z.; Lee, Y.; Kuo, T.; Sung, W.; Chu, Y.; Chueh, Y.; Fang, W. A Miniaturized CMOS-MEMS Amperometric Gas Sensor for Rapid Ethanol Detection. IEEE Sens. J. 2023, 23, 8128–8137. [Google Scholar] [CrossRef]
- Occupational Safety and Health Administration, OSHA Occupational Chemical Database for Ethyl Alcohol (Ethanol). Available online: https://www.osha.gov/chemicaldata/1034 (accessed on 18 May 2024).
- MacLean, R.R.; Valentine, G.W.; Jatlow, P.I.; Sofuoglu, M. Inhalation of Alcohol Vapor: Measurement and Implications. Alcohol. Clin. Exp. Res. 2017, 41, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Jones, A. The Relationship between Blood Alcohol Concentration (BAC) and Breath Alcohol Concentration (BrAC): A Review of the Evidence. In Road Safety Web Publication No. 15; Department for Transport: London, UK, 2010. [Google Scholar]
- Wang, B.J.; Ma, S.Y. High response ethanol gas sensor based on orthorhombic and tetragonal SnO2. Vacuum 2020, 177, 109428. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Wang, Y.; Li, X.; Cheng, P.; Zhao, Y.; Dang, F.; Zhang, Y. Hydrothermal synthesis of Au@SnO2 hierarchical hollow microspheres for ethanol detection. Sens. Actuators B Chem. 2020, 319, 128299. [Google Scholar] [CrossRef]
- Cheng, Y.; Shao, T.; Dong, J.; Kou, H.; Zhang, F.; Guo, J.; Liu, X. MOF-derived SnO2@ZnO ethanol sensors with enhanced gas sensing properties. Vacuum 2023, 216, 112440. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Hou, J.; Liu, X.; Ju, W.; Zhao, Z. DFT study of sensing properties of defected and transition-metal doped V2CF2 towards CH4. Vacuum 2024, 220, 112842. [Google Scholar] [CrossRef]
- Abbasi, A.; Sardroodi, J.J. Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices. Appl. Surf. Sci. 2018, 436, 27–41. [Google Scholar] [CrossRef]
- Li, R.; Yuan, Z.; Meng, F.; Jiao, T.; Li, G. The investigation and DFT calculation on the gas sensing properties of nanostructured SnO2. Microelectron. Eng. 2021, 236, 111469. [Google Scholar] [CrossRef]
- Li, M.; Mou, C.; Li, X.; Ge, S.; Zhu, H.; Wei, G. Ultrasensitive detection and in-depth chemical mechanism study toward ethanol vapor for LaCoO3/SnO2 nanoflower. IEEE Sens. J. 2024, 24, 8929–8936. [Google Scholar] [CrossRef]
- Xiao, L.; Shu, S.; Liu, S. A facile synthesis of Pd-doped SnO2 hollow microcubes with enhanced sensing performance. Sens. Actuators B Chem. 2015, 221, 120–126. [Google Scholar] [CrossRef]
- Inderan, V.; Arafat, M.M.; Haseeb, A.; Sudesh, K.; Lee, H.L. A Comparative Study of Structural and Ethanol Gas Sensing Properties of Pure, Nickel and Palladium Doped SnO2 Nanorods Synthesised by the Hydrothermal Method. J. Phys. Sci. 2019, 30, 149464285. [Google Scholar] [CrossRef]
- Cheng, I.; Wang, J.; Tsai, C.; Chen, Y.; Pan, F. Correlation of surface processes with characteristic sensing responses of PdO thin films to ethanol. Appl. Surf. Sci. 2019, 473, 589–596. [Google Scholar] [CrossRef]
- Pan, L.; Weaver, J.F.; Asthagiri, A. First Principles Study of Molecular O2 Adsorption on the PdO(101) Surface. Top. Catal. 2017, 60, 401–412. [Google Scholar] [CrossRef]
- Yao, G.; Zou, W.; Yu, J.; Zhu, H.; Wu, H.; Huang, Z.; Chen, W.; Li, X.; Liu, H.; Qin, K. Pd/PdO doped WO3 with enhanced selectivity and sensitivity for ppb level acetone and ethanol detection. Sens. Actuators B Chem. 2024, 401, 135003. [Google Scholar] [CrossRef]
- Sui, N.; Song, Z.; Xu, X.; Cao, S.; Xu, Y.; Zhou, T.; Zhang, T. Effect of heterogenous dopant and high temperature pulse excitation on ozone sensing behavior of In2O3 nanostructures and an image recognition method coupled to ozone sensing array. J. Hazard. Mater. 2024, 465, 133379. [Google Scholar] [CrossRef] [PubMed]
- Sui, N.; Wei, X.; Cao, S.; Zhang, P.; Zhou, T.; Zhang, T. Nanoscale Bimetallic AuPt-Functionalized Metal Oxide Chemiresistors: Ppb-Level and Selective Detection for Ozone and Acetone. ACS Sens. 2022, 7, 2178–2187. [Google Scholar] [CrossRef] [PubMed]
- Delley, B. Ground-State Enthalpies: Evaluation of Electronic Structure Approaches with Emphasis on the Density Functional Method. J. Phys. Chem. A 2006, 110, 13632–13639. [Google Scholar] [CrossRef] [PubMed]
- Delley, B. The conductor-like screening model for polymers and surfaces. Mol. Simul. 2006, 32, 117–123. [Google Scholar] [CrossRef]
- Khosravi, M.; Murthy, V.; Mackinnon, I.D.R. Evaluation of DFT methods to calculate structure and partial atomic charges for zeolite N. Comput. Mater. Sci. 2020, 171, 109225. [Google Scholar] [CrossRef]
- Qin, C.; Yu, Y.; Xu, Z.; Du, J.; Zhao, L.; Jiang, G. The adsorption properties of O atom and O2 molecule on UC(001) surface: A DFT study. Vacuum 2023, 214, 112202. [Google Scholar] [CrossRef]
- Hefnawy, M.A.; Fadlallah, S.A.; El-Sherif, R.M.; Medany, S.S. Systematic DFT studies of CO-Tolerance and CO oxidation on Cu-doped Ni surfaces. J. Mol. Graph. Model. 2023, 118, 108343. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, C.; Louis, H.; Amodu, I.O.; Benjamin, I.; Fujita, W.; Nasr, C.B.; Khedhiri, L. Crystal structure analysis, magnetic measurement, DFT studies, and adsorption properties of novel 1-(2,5-dimethyphenyl)piperazine tetrachlorocobaltate hydrate. Mater. Today Commun. 2023, 34, 104965. [Google Scholar] [CrossRef]
- Shao, S.; Wu, H.; Wang, S.; Hong, Q.; Koehn, R.; Wu, T.; Rao, W. Highly crystalline and ordered nanoporous SnO2 thin films with enhanced acetone sensing property at room temperature. J. Mater. Chem. C 2015, 3, 10819–10829. [Google Scholar] [CrossRef]
- Mauraya, A.K.; Mahana, D.; Pradhan, B.K.; Roopa; Muthusamy, S.K. Studying the band-offset of PdO/SnO2 heterostructures using X-ray photoelectron spectroscopy. J. Mater. Sci. Mater. Electron. 2022, 33, 25078–25088. [Google Scholar] [CrossRef]
- Zhou, H.; Zhong, Y.; He, Z.; Zhang, L.; Wang, J.; Zhang, J.; Cao, C. Highly porous Ti/SnO2 network composite film as stable binder-free anode materials for lithium ion batteries. Appl. Surf. Sci. 2014, 314, 1–6. [Google Scholar] [CrossRef]
- Kwoka, M.; Ottaviano, L.; Passacantando, M.; Santucci, S.; Czempik, G.; Szuber, J. XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation. Thin Solid Films 2005, 490, 36–42. [Google Scholar] [CrossRef]
- Li, G.; Fan, Y.; Hu, Q.; Zhang, D.; Ma, Z.; Cheng, Z.; Wang, X.; Xu, J. Morphology and size effect of Pd nanocrystals on formaldehyde and hydrogen sensing performance of SnO2 based gas sensor. J. Alloys Compd. 2022, 906, 163765. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, Y.; Wang, M.; Liu, J.; Pei, C.; Liu, B.; Zhao, H.; Liu, S.; Yang, H. Effect of Unsaturated Sn Atoms on Gas-Sensing Property in Hydrogenated SnO2 Nanocrystals and Sensing Mechanism. Sci. Rep. 2017, 7, 1231. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Wu, Q.; Cheng, X.; Wang, Q.; Yang, Y.; An, B.; Wang, P.; Xie, E. SnO2 grains with abundant surface oxygen vacancies for the Ultra-sensitive detection of NO2 at low temperature. Appl. Surf. Sci. 2023, 614, 156223. [Google Scholar] [CrossRef]
- Jeong, B.; Lee, D.; Park, J.; Lee, S.M. Near ambient pressure XPS investigation of hydrous palladium oxide under water and oxygen gas environments. J. Phys. D Appl. Phys. 2021, 54, 324001. [Google Scholar] [CrossRef]
- Li, M.; Zhu, H.; Wei, G.; He, A.; Liu, Y. VOCs gas sensing properties on SnO2 (110) surface with dissociated oxygen species pre-adsorbed: Experiments and DFT analysis. J. Mater. Sci. Mater. Electron. 2019, 30, 19625–19638. [Google Scholar] [CrossRef]
- Yan, W.; Chen, Y.; Zeng, X.; Wu, G.; Jiang, W.; Wei, D.; Ling, M.; Wei Ng, K.; Qin, Y. Ultrasensitive ethanol sensor based on segregated ZnO-In2O3 porous nanosheets. Appl. Surf. Sci. 2021, 535, 147697. [Google Scholar] [CrossRef]
- Montazeri, A.; Jamali-Sheini, F. Enhanced ethanol gas-sensing performance of Pb-doped In2O3 nanostructures prepared by sonochemical method. Sens. Actuators B Chem. 2017, 242, 778–791. [Google Scholar] [CrossRef]
- Jiang, B.; Zhou, T.; Zhang, L.; Han, W.; Yang, J.; Wang, C.; Sun, Y.; Liu, F.; Sun, P.; Lu, G. Construction of mesoporous In2O3-ZnO hierarchical structure gas sensor for ethanol detection. Sens. Actuators B Chem. 2023, 393, 134203. [Google Scholar] [CrossRef]
- Li, Y.; Luo, N.; Sun, G.; Zhang, B.; Lin, L.; Jin, H.; Wang, Y.; Bala, H.; Cao, J.; Zhang, Z. In situ decoration of Zn2SnO4 nanoparticles on reduced graphene oxide for high performance ethanol sensor. Ceram. Int. 2018, 44, 6836–6842. [Google Scholar]
- Li, X.Q.; Li, D.P.; Xu, J.C.; Han, Y.B.; Jin, H.X.; Hong, B.; Ge, H.L.; Wang, X.Q. Calcination-temperature-dependent gas-sensing properties of mesoporous α-Fe2O3 nanowires as ethanol sensors. Solid State Sci. 2017, 69, 38–43. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J.; Jiang, J. Morphological evolution, luminescence properties and a high-sensitivity ethanol gas sensor based on 3D flower-like MoS2-ZnO micro/nanosphere arrays. Ceram. Int. 2020, 46, 6634–6640. [Google Scholar]
- Xu, C.; Ma, S.; Liu, M.; Cai, Y.; Wei, J.; Liu, J.; Jiang, H. High performance detection of ethanol based on HoFeO3 microsphere gas sensor. Vacuum 2023, 217, 112537. [Google Scholar]
- Zhang, J.; Ma, S.; Wang, B.; Pei, S. Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor. J. Alloys Compd. 2021, 886, 161299. [Google Scholar] [CrossRef]
- Profeti, L.P.; Ticianelli, E.A.; Assaf, E.M. Production of hydrogen by ethanol steam reforming on Co/Al2O3 catalysts: Effect of addition of small quantities of noble metals. J. Power Sources 2008, 175, 482–489. [Google Scholar] [CrossRef]
- Tian, X.; Hu, Z.; Wang, T.; Wang, H.; Zhang, Q.; Wei, X. Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection. Vacuum 2023, 207, 111620. [Google Scholar] [CrossRef]
- Verma, M.K.; Gupta, V. Enhanced Response of Pd Nanoparticle-Loaded SnO2 Thin Film Sensor for H2 Gas. IEEE Sens. J. 2012, 12, 2993–2999. [Google Scholar] [CrossRef]
- Sharma, M.; Patel, C.; Maiti, S.; Mukherjee, S.; Das, A.K. Fabricated Chemiresistive Sensor for Detection of Ethanol Using NDICY-ZnO Nanohybrid. IEEE Sens. J. 2023, 23, 15342–15349. [Google Scholar] [CrossRef]
- Xie, F.; Li, W.; Zhang, Q.; Zhang, S. Highly Sensitive and Selective CO/NO/H2/NO2 Gas Sensors Using Noble Metal (Pt, Pd) Decorated MOx (M = Sn, W) Combined with SiO2 Membrane. IEEE Sens. J. 2019, 19, 10674–10679. [Google Scholar] [CrossRef]
- Ramu, A.G.; Choi, D. Highly efficient and simultaneous catalytic reduction of multiple toxic dyes and nitrophenols waste water using highly active bimetallic PdO-NiO nanocomposite. Sci. Rep. 2021, 11, 22699. [Google Scholar] [CrossRef]
- Akgul, F.A.; Gumus, C.; Er, A.O.; Farha, A.H.; Akgul, G.; Ufuktepe, Y.; Liu, Z. Structural and electronic properties of SnO2. J. Alloys Compd. 2013, 579, 50–56. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, Y.; Wang, S.; Wang, B.; Suematsu, K.; Zhang, W.; Hu, J. Hierarchical Urchin-Like Au Decorated SnO2/Fe2O3 Microspheres for Highly Efficient N-Butanol Detection. IEEE Sens. J. 2023, 23, 11713–11720. [Google Scholar] [CrossRef]
- Sui, N.; Xu, Y.; Zhang, P.; Cao, S.; Zhou, T.; Zhang, T. MIL-68 (In) and ZIF-8 assisted construction of n-n heterostructure for the effective sensing of trace-level ozone. Sens. Actuators B Chem. 2023, 380, 133312. [Google Scholar] [CrossRef]
- Marikutsa, A.V.; Rumyantseva, M.N.; Frolov, D.D.; Morozov, I.V.; Boltalin, A.I.; Fedorova, A.A.; Petukhov, I.A.; Yashina, L.V.; Konstantinova, E.A.; Sadovskaya, E.M.; et al. Role of PdOx and RuOy Clusters in Oxygen Exchange between Nanocrystalline Tin Dioxide and the Gas Phase. J. Phys. Chem. C 2013, 117, 23858–23867. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Hoppe, M.; Wolff, N.; Polonskyi, O.; Pauporté, T.; Viana, B.; Majérus, O.; Kienle, L.; Faupel, F.; et al. PdO/PdO2 functionalized ZnO : Pd films for lower operating temperature H2 gas sensing. Nanoscale 2018, 10, 14107–14127. [Google Scholar] [CrossRef]
- Wang, W.; Jin, W.; Yang, S.; Jian, Z.; Chen, W. PdOx decorated Co3O4 nanosheets-assembled hollow microcages for enhanced ethanol sensing performance. Sens. Actuators B Chem. 2021, 333, 129583. [Google Scholar] [CrossRef]
- Huang, F.; Chen, J.; Hu, W.; Li, G.; Wu, Y.; Yuan, S.; Zhong, L.; Chen, Y. Pd or PdO: Catalytic active site of methane oxidation operated close to stoichiometric air-to-fuel for natural gas vehicles. Appl. Catal. B Environ. 2017, 219, 73–81. [Google Scholar] [CrossRef]
- Nemufulwi, M.I.; Swart, H.C.; Shingange, K.; Mhlongo, G.H. ZnO/ZnFe2O4 heterostructure for conductometric acetone gas sensors. Sens. Actuators B Chem. 2023, 377, 133027. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Gao, C.; Zhao, X.; Sun, S.; Ren, Y.; Zhang, Q.; Zhang, J.; Dang, W.; Zhao, Y.; et al. Isobutanol gas sensor based on Fe2O3–SnO2 heterostructure nanostructure. Vacuum 2023, 218, 112624. [Google Scholar] [CrossRef]
Material | Temp. (°C) | Con. (ppm) | Res. (Ra/Rg) | LOD (ppm) | Ref. |
---|---|---|---|---|---|
ZnO–In2O3 | 350 | 10 | 5 | 1 | [35] |
Pb–In2O3 | 250 | 100 | 32.57 | 5 | [36] |
In2O3–ZnO | 225 | 100 | 52 | 0.2 | [37] |
Zn2SnO4–RGO | 275 | 100 | 38 | 5 | [38] |
α–Fe2O3 | 300 | 100 | 37.57 | 5 | [39] |
MoS2–ZnO | 220 | 500 | 12.08 | - | [40] |
HoFeO3 | 280 | 100 | 33 | 5 | [41] |
SnO2–CuO | 320 | 100 | 8 | - | [42] |
SnO2 | 350 | 100 | 27.13 | 2.94 | [43] |
TiO2–SnO2 | 260 | 50 | 7.54 | 1 | [44] |
PdO–SnO2 | 300 | 1 | 4.6 | 1 | This work |
10 | 16.7 | ||||
70 | 52.7 |
Atom Symbol | Meaning |
---|---|
O−OH | The O atom of the −OH group in the ethanol molecule |
H−OH | The H atom of the −OH group in the ethanol molecule |
H−CH2 | The H atom of the −CH2 group in the ethanol molecule |
H−CH3 | The H atom of the −CH3 group in the ethanol molecule |
Sn5c | The Sn atom coordinated with five O atoms on the SnO2(110) surface |
O2c(SnO2) | The O atom coordinated with two Sn atoms on the SnO2(110) surface |
Pd3c | The Pd atom coordinated with three O atoms on the PdO(101)–SnO2(110) surface |
Pd4c | The Pd atom coordinated with four O atoms on the PdO(101)–SnO2(110) surface |
O2c | The O atom coordinated with two Pd atoms on the PdO(101)–SnO2(110) surface |
O3c | The O atom coordinated with two Pd atoms and one Sn atom on the PdO(101)–SnO2(110) surface |
Surface | Adsorption Configuration | Adsorption Energy (eV) | Transferred Electrons (e) | Adsorbed Atom Pair | Adsorption Strength |
---|---|---|---|---|---|
SnO2(110) | Figure 6A | −2.05 | 0.151 * | O-OH-Sn5c; H-OH-O2c(SnO2); H-CH2-O2c(SnO2) | strong |
Figure 6B | −0.90 | 0.253 | H-OH-O2c(SnO2); H-CH3-Sn5c | medium | |
Figure 6C | −0.75 | 0.227 | H-OH-O2c(SnO2) | medium | |
Figure 6D | −0.34 | 0.146 | H-CH3-O2c(SnO2) | weak | |
PdO(101)– SnO2(110) | Figure 8A | −1.91 | 0.266 | O-OH-Sn5c; H-OH-O3c | strong |
Figure 8B | −1.52 | 0.252 | O-OH-Pd3c; H-OH-O2c (SnO2) | strong | |
Figure 8C | −1.52 | 0.247 | O-OH-Pd3c; H-OH-O3c | strong | |
Figure 8D | −1.51 | 0.229 | O-OH-Pd3c; H-OH-O2c | strong | |
Figure 8E | −1.01 | 0.286 | H-OH-O2c; H-CH2-Pd3c | medium | |
Figure 8F | −0.81 | 0.229 | H-OH-O2c | medium | |
Figure 8G | −0.77 | 0.18 | O-OH-Pd4c; H-OH-O2c | medium | |
Figure 8H | −0.51 | 0.186 | H-CH3-Pd3c; H-CH3-Pd4c | weak | |
Figure 8I | −0.48 | 0.157 | H-CH3-O2c; H-CH3-O2c(SnO2) | weak |
Adsorption Strength | Adsorption Conditions | ||
---|---|---|---|
O-OH | H-OH | H-CH3 | |
strong | adsorbed on Sn5c or Pd3c | adsorbed | - |
medium | adsorbed on Pd4c or not adsorbed | adsorbed | - |
weak | not adsorbed | not adsorbed | adsorbed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Zhang, J.; Zhu, H.; Li, X.; Liu, H.; Tang, Z.; Yao, G.; Yu, J. Experimental and Density Functional Theory Simulation Research on PdO–SnO2 Nanosheet Ethanol Gas Sensors. Sensors 2024, 24, 4970. https://doi.org/10.3390/s24154970
Wu H, Zhang J, Zhu H, Li X, Liu H, Tang Z, Yao G, Yu J. Experimental and Density Functional Theory Simulation Research on PdO–SnO2 Nanosheet Ethanol Gas Sensors. Sensors. 2024; 24(15):4970. https://doi.org/10.3390/s24154970
Chicago/Turabian StyleWu, Hao, Jianwei Zhang, Huichao Zhu, Xiaogan Li, Hongxu Liu, Zhenan Tang, Guanyu Yao, and Jun Yu. 2024. "Experimental and Density Functional Theory Simulation Research on PdO–SnO2 Nanosheet Ethanol Gas Sensors" Sensors 24, no. 15: 4970. https://doi.org/10.3390/s24154970
APA StyleWu, H., Zhang, J., Zhu, H., Li, X., Liu, H., Tang, Z., Yao, G., & Yu, J. (2024). Experimental and Density Functional Theory Simulation Research on PdO–SnO2 Nanosheet Ethanol Gas Sensors. Sensors, 24(15), 4970. https://doi.org/10.3390/s24154970