The Influence of Induced Head Acceleration on Lower-Extremity Biomechanics during a Cutting Task
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Procedures
2.4. Land-and-Cut Task
2.5. Hopping Interventions
2.6. Data Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manley, G.; Gardner, A.J.; Schneider, K.J.; Guskiewicz, K.M.; Bailes, J.; Cantu, R.C.; Castellani, R.J.; Turner, M.; Jordan, B.D.; Randolph, C.; et al. A systematic review of potential long-term effects of sport-related concussion. Br. J. Sports Med. 2017, 51, 969–977. [Google Scholar] [CrossRef]
- Broglio, S.P.; Register-Mihalik, J.K.; Guskiewicz, K.M.; Leddy, J.J.; Merriman, A.; McLeod, T.C.V. National Athletic Trainers’ Association Bridge Statement: Management of Sport-Related Concussion. J. Athl. Train. 2024, 59, 225–242. [Google Scholar] [CrossRef]
- Patricios, J.S.; Schneider, K.J.; Dvorak, J.; Ahmed, O.H.; Blauwet, C.; Cantu, R.C.; Davis, G.A.; Echemendia, R.J.; Makdissi, M.; McNamee, M.; et al. Consensus statement on concussion in sport—The 6th international conference on concussion in sport, October 2022. Br. J. Sports Med. 2023, 51, 838–847. [Google Scholar] [CrossRef]
- Chmielewski, T.L.; Tatman, J.; Suzuki, S.; Horodyski, M.; Reisman, D.S.; Bauer, R.M.; Clugston, J.R.; Herman, D.C. Impaired motor control after sport-related concussion could increase risk for musculoskeletal injury: Implications for clinical management and rehabilitation. J. Sport Health Sci. 2021, 10, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Howell, D.R.; Lynall, R.C.; Buckley, T.A.; Herman, D.C. Neuromuscular Control Deficits and the Risk of Subsequent Injury after a Concussion: A Scoping Review. Sports Med. 2018, 48, 1097–1115. [Google Scholar] [CrossRef] [PubMed]
- Brooks, M.A.; Peterson, K.; Biese, K.; Sanfilippo, J.; Heiderscheit, B.C.; Bell, D.R. Concussion Increases Odds of Sustaining a Lower Extremity Musculoskeletal Injury after Return to Play among Collegiate Athletes. Am. J. Sports Med. 2016, 44, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Cross, M.; Kemp, S.; Smith, A.; Trewartha, G.; Stokes, K. Professional Rugby Union players have a 60% greater risk of time loss injury after concussion: A 2-season prospective study of clinical outcomes. Br. J. Sports Med. 2016, 50, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Herman, D.C.; Jones, D.; Harrison, A.; Moser, M.; Tillman, S.; Farmer, K.; Pass, A.; Clugston, J.R.; Hernandez, J.; Chmielewski, T.L. Concussion May Increase the Risk of Subsequent Lower Extremity Musculoskeletal Injury in Collegiate Athletes. Sports Med. 2016, 47, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Lynall, R.C.; Mauntel, T.C.; Padua, D.A.; Mihalik, J.P. Acute Lower Extremity Injury Rates Increase after Concussion in College Athletes. Med. Sci. Sports Exerc. 2015, 47, 2487–2492. [Google Scholar] [CrossRef]
- McPherson, A.L.; Nagai, T.; Webster, K.E.; Hewett, T.E. Musculoskeletal Injury Risk after Sport-Related Concussion: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2019, 47, 1754–1762. [Google Scholar] [CrossRef]
- Pietroscimone, B.; Golightly, Y.M.; Mihalik, J.P.; Guskiewicz, K.M. Concussion Frequency Associates with Musculoskeletal Injury in Retired NFL Players. Med. Sci. Sports Exerc. 2015, 47, 2366–2372. [Google Scholar] [CrossRef]
- Avedesian, J.M.; Covassin, T.; Dufek, J.S. Landing Biomechanics in Adolescent Athletes with and without a History of Sports-Related Concussion. J. Appl. Biomech. 2020, 36, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Avedesian, J.M. The Influence of Sports-Related Concussion on Lower Extremity Injury Risk in Adolescent and Collegiate Athletes. Ph.D. Thesis, University of Nevada, Las Vegas, NV, USA, May 2021. [Google Scholar]
- Dubose, D.F.; Herman, D.C.; Jones, D.L.; Tillman, S.M.; Clugston, J.R.; Pass, A.; Hernandez, J.A.; Vasilopoulos, T.; Horodyski, M.; Chmielewski, T.L. Lower Extremity Stiffness Changes after Concussion in Collegiate Football Players. Med. Sci. Sports Exerc. 2017, 49, 167–172. [Google Scholar] [CrossRef]
- Lapointe, A.P.; Nolasco, L.A.; Sosnowski, A.; Andrews, E.; Martini, D.N.; Palmieri-Smith, R.M.; Gates, D.H.; Broglio, S.P. Kinematic differences during a jump cut maneuver between individuals with and without a concussion history. Int. J. Psychophysiol. 2018, 132, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.J.; Blueitt, D.; Hannon, J.; Goto, S.; Garrison, J.C. Movement patterns differ between athletes after sports-related concussion compared to healthy controls during jump landing task. J. Athl. Train. 2021, 56, 1306–1312. [Google Scholar] [CrossRef]
- Lynall Robert, C.; Blackburn, J.T.; Guskiewicz, K.M.; Marshall, S.W.; Plummer, P.; Mihalik, J.P. Reaction Time and Joint Kinematics during Functional Movement in Recently Concussed Individuals. Arch. Phys. Med. Rehabil. 2018, 99, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/traumatic-brain-injury/about/?CDC_AAref_Val=https://www.cdc.gov/traumaticbraininjury/concussion/index.html (accessed on 14 November 2022).
- Tierney, G. Concussion biomechanics, head acceleration exposure and brain injury criteria in sport: A review. Sports Biomech. 2021, 1–29. [Google Scholar] [CrossRef]
- Kercher, K.; Steinfeldt, J.A.; Macy, J.T.; Ejima, K.; Kawata, K. Subconcussive head impact exposure between drill intensities in U.S. high school football. PLoS ONE 2020, 15, e0237800. [Google Scholar] [CrossRef]
- Lynall Robert, C.; Campbell, K.R.; Mauntel, T.C.; Blackburn, J.T.; Mihalik, J.P. Single-Legged Hop and Single-Legged Squat Balance Performance in Recreational Athletes with a History of Concussion. J. Athl. Train. 2020, 55, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for Noncontact Anterior Cruciate Ligament Injuries: Knee Joint Kinematics in 10 Injury Situations from Female Team Handball and Basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef]
- Miller Urban, J.E.; Whelan, V.M.; Baxter, W.W.; Tatter, S.B.; Stitzel, J.D. An envelope of linear and rotational head motion during everyday activities. Biomechanics and Modeling in Mechanobiology. Biomech. Model. Mechanobiol. 2020, 19, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.P.; Bussone, W.R.; Duma, S.M. The effect of gender and body size on linear accelerations of the head observed during daily activities. Biomed. Sci. Instrum. 2006, 42, 25–30. [Google Scholar] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; Van Den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed]
Variable | hopV | hopL |
---|---|---|
n | 10 (7F/3M) | 10 (7F/3M) |
Age (years) | 23.40 ± 3.78 | 21.80 ± 2.86 |
Height (m) | 1.67 ± 0.10 | 1.70 ± 0.11 |
Mass (kg) | 85.40 ± 47.09 | 70.30 ± 15.76 |
Resting HR (bpm) | 81.33 ± 6.95 | 80.20 ± 11.80 |
Target HR (bpm) * | 118.77 ± 1.91 | 118.66 ± 1.90 |
Dependent Variable | Left Limb Pre-Test | Left Limb Post-Test | p | Cohen’s d | Right Limb Pre-Test | Right Limb Post-Test | p | Cohen’s d |
---|---|---|---|---|---|---|---|---|
vGRF (BWs) | 3.02 ± 0.58 | 3.02 ± 1.12 | 1.00 | 0 | 3.25 ± 0.88 | 3.17 ± 1.25 | 0.84 | 0.07 |
Impulse (N × s/BW) | 0.55 ± 0.11 | 0.71 ± 0.30 | 0.19 | 0.45 | 0.60 ± 0.09 | 0.54 ± 0.11 | 0.02 * | 0.86 |
Dorsiflexion (degrees) | 21.45 ± 9.59 | 24.34 ± 6.80 | 0.49 | 0.23 | 23.98 ± 5.11 | 24.96 ± 6.25 | 0.18 | 0.46 |
Knee Abduction (degrees) | 5.16 ± 3.87 | 7.48 ± 3.89 | 0.34 | 0.32 | 6.58 ± 5.46 | 5.71 ± 3.76 | 0.67 | 0.14 |
Knee Flexion (degrees) | 72.42 ± 11.08 | 84.93 ± 5.99 | 0.01 * | 1.03 | 72.40 ± 9.48 | 82.91 ± 8.31 | 0.008 * | 1.07 |
Hip Flexion (degrees) | 78.83 ± 16.03 | 82.45 ± 17.14 | 0.67 | 0.14 | 79.66 ± 19.48 | 77.47 ± 16.00 | 0.27 | 0.37 |
Dependent Variable | Left Limb Pre-Test | Left Limb Post-Test | p | Cohen’s d | Right Limb Pre-Test | Right Limb Post-Test | p | Cohen’s d |
---|---|---|---|---|---|---|---|---|
vGRF (BWs) | 3.00 ± 0.64 | 3.20 ± 1.10 | 0.67 | 0.14 | 3.11 ± 0.84 | 2.87 ± 0.66 | 0.14 | 0.51 |
Impulse (N × s/BW) | 0.62 ± 0.09 | 0.57 ± 0.18 | 0.52 | 0.21 | 0.62 ± 0.06 | 0.64 ± 0.08 | 0.59 | 0.18 |
Dorsiflexion (degrees) | 20.41 ± 5.43 | 21.54 ± 9.97 | 0.78 | 0.09 | 29.19 ± 22.73 | 22.72 ± 5.89 | 0.40 | 0.28 |
Knee Abduction (degrees) | 0.95 ± 4.21 | −0.46 ± 2.65 | 0.36 | 0.31 | 7.50 ± 5.74 | 7.70 ± 6.99 | 0.73 | 0.11 |
Knee Flexion (degrees) | 82.70 ± 14.08 | 85.65 ± 5.27 | 0.53 | 0.21 | 72.46 ± 9.75 | 73.66 ± 10.67 | 0.68 | 0.14 |
Hip Flexion (degrees) | 77.38 ± 11.34 | 76.13 ± 12.54 | 0.86 | 0.06 | 75.53 ± 10.22 | 76.54 ± 15.72 | 0.73 | 0.11 |
Dependent Variable | Left Limb hopV | Left Limb hopL | p | Cohen’s d | Right Limb hopV | Right Limb hopL | p | Cohen’s d |
---|---|---|---|---|---|---|---|---|
vGRF (BWs) | 3.01 ± 1.14 | 3.21 ± 1.11 | 0.70 | 0.17 | 3.16 ± 1.25 | 2.88 ± 0.65 | 0.54 | 0.28 |
Impulse (Ns/BW) | 0.71 ± 0.30 | 0.57 ± 0.18 | 0.21 | 0.58 | 0.54 ± 0.11 | 0.65 ± 0.08 | 0.02 * | 1.11 |
Dorsiflexion (degrees) | 24.34 ± 6.78 | 21.54 ± 9.95 | 0.47 | 0.33 | 24.95 ± 6.26 | 22.73 ± 5.88 | 0.42 | 0.37 |
Knee Abduction (degrees) | 7.48 ± 3.89 | −0.45 ± 2.65 | 0.000 ** | 2.39 | 5.72 ± 3.77 | 7.71 ± 6.98 | 0.44 | 0.36 |
Knee Flexion (degrees) | 84.93 ± 5.99 | 85.65 ± 5.27 | 0.78 | 0.13 | 82.92 ± 8.32 | 73.66 ± 10.65 | 0.04 * | 0.99 |
Hip Flexion (degrees) | 82.43 ± 17.15 | 76.14 ± 12.53 | 0.36 | 0.42 | 77.46 ± 15.99 | 76.56 ± 15.71 | 0.90 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forbes, W.O.; Dufek, J.S. The Influence of Induced Head Acceleration on Lower-Extremity Biomechanics during a Cutting Task. Sensors 2024, 24, 5032. https://doi.org/10.3390/s24155032
Forbes WO, Dufek JS. The Influence of Induced Head Acceleration on Lower-Extremity Biomechanics during a Cutting Task. Sensors. 2024; 24(15):5032. https://doi.org/10.3390/s24155032
Chicago/Turabian StyleForbes, Warren O., and Janet S. Dufek. 2024. "The Influence of Induced Head Acceleration on Lower-Extremity Biomechanics during a Cutting Task" Sensors 24, no. 15: 5032. https://doi.org/10.3390/s24155032
APA StyleForbes, W. O., & Dufek, J. S. (2024). The Influence of Induced Head Acceleration on Lower-Extremity Biomechanics during a Cutting Task. Sensors, 24(15), 5032. https://doi.org/10.3390/s24155032