Errors in Estimating Lower-Limb Joint Angles and Moments during Walking Based on Pelvic Accelerations: Influence of Virtual Inertial Measurement Unit’s Frontal Plane Misalignment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experiment
2.3. Data Analysis
2.4. Estimation Method for Joint Angles and Moments
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miyazaki, T.; Wada, M.; Kawahara, H.; Sato, M.; Baba, H.; Shimada, S. Dynamic Load at Baseline Can Predict Radiographic Disease Progression in Medial Compartment Knee Osteoarthritis. Ann. Rheum. Dis. 2002, 61, 617–622. [Google Scholar] [CrossRef]
- Chehab, E.F.; Favre, J.; Erhart-Hledik, J.C.; Andriacchi, T.P. Baseline Knee Adduction and Flexion Moments during Walking Are Both Associated with 5 Year Cartilage Changes in Patients with Medial Knee Osteoarthritis. Osteoarthr. Cartil. 2014, 22, 1833–1839. [Google Scholar] [CrossRef]
- Hatfield, G.L.; Stanish, W.D.; Hubley-Kozey, C.L. Three-Dimensional Biomechanical Gait Characteristics at Baseline Are Associated with Progression to Total Knee Arthroplasty. Arthritis Care Res. 2015, 67, 1004–1014. [Google Scholar] [CrossRef]
- Teng, H.-L.; MacLeod, T.D.; Link, T.M.; Majumdar, S.; Souza, R.B. Higher Knee Flexion Moment during the Second Half of the Stance Phase of Gait Is Associated with the Progression of Osteoarthritis of the Patellofemoral Joint on Magnetic Resonance Imaging. J. Orthop. Sports Phys. Ther. 2015, 45, 656–664. [Google Scholar] [CrossRef]
- Chang, A.H.; Chmiel, J.S.; Almagor, O.; Guermazi, A.; Prasad, P.V.; Moisio, K.C.; Belisle, L.; Zhang, Y.; Hayes, K.; Sharma, L. Association of Baseline Knee Sagittal Dynamic Joint Stiffness during Gait and 2-Year Patellofemoral Cartilage Damage Worsening in Knee Osteoarthritis. Osteoarthr. Cartil. 2017, 25, 242–248. [Google Scholar] [CrossRef]
- Tateuchi, H.; Koyama, Y.; Akiyama, H.; Goto, K.; So, K.; Kuroda, Y.; Ichihashi, N. Daily Cumulative Hip Moment Is Associated with Radiographic Progression of Secondary Hip Osteoarthritis. Osteoarthr. Cartil. 2017, 25, 1291–1298. [Google Scholar] [CrossRef]
- Kumar, D.; Wyatt, C.; Lee, S.; Okazaki, N.; Chiba, K.; Link, T.M.; Souza, R.B.; Majumdar, S. Sagittal Plane Walking Patterns Are Related to MRI Changes over 18-Months in People with and without Mild-Moderate Hip Osteoarthritis. J. Orthop. Res. 2018, 36, 1472–1477. [Google Scholar] [CrossRef]
- Chehab, E.F.; Andriacchi, T.P.; Favre, J. Speed, Age, Sex, and Body Mass Index Provide a Rigorous Basis for Comparing the Kinematic and Kinetic Profiles of the Lower Extremity during Walking. J. Biomech. 2017, 58, 11–20. [Google Scholar] [CrossRef]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. A Public Dataset of Overground and Treadmill Walking Kinematics and Kinetics in Healthy Individuals. PeerJ 2018, 6, e4640. [Google Scholar] [CrossRef]
- Lim, H.; Kim, B.; Park, S. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning. Sensors 2019, 20, E130. [Google Scholar] [CrossRef]
- Lee, M.; Park, S. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum. Sensors 2020, 20, E6277. [Google Scholar] [CrossRef]
- Ruder, M.C.; Hunt, M.A.; Charlton, J.M.; Tse, C.T.F.; Kobsar, D. Original Article: Validity and Reliability of Gait Metrics Derived from Researcher-Placed and Self-Placed Wearable Inertial Sensors. J. Biomech. 2022, 142, 111263. [Google Scholar] [CrossRef]
- Banos, O.; Toth, M.A.; Damas, M.; Pomares, H.; Rojas, I. Dealing with the Effects of Sensor Displacement in Wearable Activity Recognition. Sensors 2014, 14, 9995–10023. [Google Scholar] [CrossRef]
- Inai, T.; Kudo, S.; Tsuchida, W.; Fujimoto, M. Knee Sleeves Improve Gait Symmetry during Fast Walking in Older Adults. Front. Bioeng. Biotechnol. 2024, 12, 1394314. [Google Scholar] [CrossRef]
- Franz, J.R.; Slane, L.C.; Rasske, K.; Thelen, D.G. Non-Uniform in Vivo Deformations of the Human Achilles Tendon during Walking. Gait Posture 2015, 41, 192–197. [Google Scholar] [CrossRef]
- Bakke, D.; Besier, T. Shape Model Constrained Scaling Improves Repeatability of Gait Data. J. Biomech. 2020, 107, 109838. [Google Scholar] [CrossRef]
- Hida, N.; Fujimoto, M.; Ooie, T.; Kobayashi, Y. Effects of Footwear Fixation on Joint Angle Variability during Straight Gait in the Elderly. Gait Posture 2021, 86, 162–168. [Google Scholar] [CrossRef]
- Inai, T.; Kobayashi, Y.; Huang, C.; Fujita, K.; Fujimoto, M.; Nihey, F.; Yamamoto, A.; Nakajima, K.; Nakahara, K.; Kutsuzawa, G.; et al. Identification of Characteristics of Foot Position and Angle during Swing Phase in Fallers Using Principal Component Analysis. Front. Bioeng. Biotechnol. 2023, 11, 1117884. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Hida, N.; Nakajima, K.; Fujimoto, M.; Mochimaru, M. AIST Gait Database 2019. 2019. Available online: https://unit.aist.go.jp/harc/ExPART/GDB2019_e.html (accessed on 4 August 2024).
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef]
- Seth, A.; Hicks, J.L.; Uchida, T.K.; Habib, A.; Dembia, C.L.; Dunne, J.J.; Ong, C.F.; DeMers, M.S.; Rajagopal, A.; Millard, M.; et al. OpenSim: Simulating Musculoskeletal Dynamics and Neuromuscular Control to Study Human and Animal Movement. PLoS Comput. Biol. 2018, 14, e1006223. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Pan, D.; Li, Q. Power Calculation of Multi-Step Combined Principal Components with Applications to Genetic Association Studies. Sci. Rep. 2016, 6, 26243. [Google Scholar] [CrossRef]
- Kuo, A.D. A Least-Squares Estimation Approach to Improving the Precision of Inverse Dynamics Computations. J. Biomech. Eng. 1998, 120, 148–159. [Google Scholar] [CrossRef]
- Cahouët, V.; Luc, M.; David, A. Static Optimal Estimation of Joint Accelerations for Inverse Dynamics Problem Solution. J. Biomech. 2002, 35, 1507–1513. [Google Scholar] [CrossRef]
- Ren, L.; Jones, R.K.; Howard, D. Whole Body Inverse Dynamics over a Complete Gait Cycle Based Only on Measured Kinematics. J. Biomech. 2008, 41, 2750–2759. [Google Scholar] [CrossRef]
- Sivakumar, S.; Gopalai, A.A.; Lim, K.H.; Gouwanda, D.; Chauhan, S. Joint Angle Estimation with Wavelet Neural Networks. Sci. Rep. 2021, 11, 10306. [Google Scholar] [CrossRef]
- Bytyqi, D.; Shabani, B.; Lustig, S.; Cheze, L.; Karahoda Gjurgjeala, N.; Neyret, P. Gait Knee Kinematic Alterations in Medial Osteoarthritis: Three Dimensional Assessment. Int. Orthop. 2014, 38, 1191–1198. [Google Scholar] [CrossRef]
- Constantinou, M.; Loureiro, A.; Carty, C.; Mills, P.; Barrett, R. Hip Joint Mechanics during Walking in Individuals with Mild-to-Moderate Hip Osteoarthritis. Gait Posture 2017, 53, 162–167. [Google Scholar] [CrossRef]
- Diamond, L.E.; Allison, K.; Dobson, F.; Hall, M. Hip Joint Moments during Walking in People with Hip Osteoarthritis: A Systematic Review and Meta-Analysis. Osteoarthr. Cartil. 2018, 26, 1415–1424. [Google Scholar] [CrossRef]
- Eitzen, I.; Fernandes, L.; Nordsletten, L.; Risberg, M.A. Sagittal Plane Gait Characteristics in Hip Osteoarthritis Patients with Mild to Moderate Symptoms Compared to Healthy Controls: A Cross-Sectional Study. BMC Musculoskelet. Disord. 2012, 13, 258. [Google Scholar] [CrossRef]
- Foucher, K.C. Sex-Specific Hip Osteoarthritis-Associated Gait Abnormalities: Alterations in Dynamic Hip Abductor Function Differ in Men and Women. Clin. Biomech. 2017, 48, 24–29. [Google Scholar] [CrossRef]
- Na, A.; Piva, S.R.; Buchanan, T.S. Influences of Knee Osteoarthritis and Walking Difficulty on Knee Kinematics and Kinetics. Gait Posture 2018, 61, 439–444. [Google Scholar] [CrossRef] [PubMed]
Condition | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
M20 | M10 | ZERO | P10 | P20 | ||||||
Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | |
NRMSE (Unit: %) | ||||||||||
Pelvis | ||||||||||
Sagittal angle | 70.4 | (24.5) | 39.1 | (14.3) | 28.6 | (8.4) | 35.7 | (10.8) | 56.1 | (18.0) |
Frontal angle | 175.2 | (58.3) | 89.2 | (30.0) | 9.3 | (5.0) | 89.3 | (30.2) | 175.1 | (58.6) |
Horizontal angle | 37.9 | (18.8) | 25.2 | (14.6) | 20.8 | (13.6) | 28.8 | (20.7) | 44.6 | (28.9) |
Hip | ||||||||||
Sagittal angle | 6.4 | (2.9) | 5.6 | (2.6) | 5.1 | (2.3) | 6.0 | (2.6) | 9.2 | (3.4) |
Frontal angle | 170.4 | (41.7) | 87.1 | (24.5) | 16.2 | (8.6) | 87.4 | (25.7) | 171.5 | (43.0) |
Horizontal angle | 89.3 | (37.8) | 57.1 | (30.0) | 40.3 | (26.3) | 58.2 | (33.3) | 94.9 | (42.6) |
Knee | ||||||||||
Sagittal angle | 10.3 | (3.4) | 7.5 | (3.1) | 6.1 | (2.6) | 7.6 | (3.0) | 11.5 | (3.5) |
Frontal angle | 97.4 | (50.1) | 63.7 | (36.9) | 46.2 | (26.9) | 62.0 | (33.0) | 98.8 | (44.7) |
Horizontal angle | 86.5 | (50.2) | 56.3 | (38.5) | 43.8 | (28.4) | 53.4 | (32.7) | 76.3 | (42.1) |
Ankle | ||||||||||
Sagittal angle | 13.6 | (6.1) | 11.6 | (5.6) | 11.1 | (5.5) | 12.3 | (6.1) | 15.3 | (7.3) |
Frontal angle | 51.8 | (30.1) | 37.2 | (23.0) | 30.5 | (16.7) | 35.3 | (16.3) | 48.2 | (19.9) |
Horizontal angle | 73.4 | (42.6) | 48.1 | (33.3) | 37.4 | (30.3) | 48.4 | (40.9) | 74.6 | (52.2) |
Ratio of NRMSE | ||||||||||
Pelvis | ||||||||||
Sagittal angle | 2.6 | (0.9) | 1.4 | (0.4) | 1.0 | (0.0) | 1.3 | (0.3) | 2.1 | (0.7) |
Frontal angle | 22.0 | (9.7) | 11.2 | (4.9) | 1.0 | (0.0) | 11.2 | (5.0) | 22.0 | (9.8) |
Horizontal angle | 2.2 | (1.3) | 1.4 | (0.7) | 1.0 | (0.0) | 1.5 | (0.7) | 2.5 | (1.4) |
Hip | ||||||||||
Sagittal angle | 1.4 | (0.5) | 1.1 | (0.3) | 1.0 | (0.0) | 1.3 | (0.5) | 2.1 | (1.1) |
Frontal angle | 13.2 | (7.1) | 6.8 | (3.7) | 1.0 | (0.0) | 6.7 | (3.6) | 13.2 | (7.0) |
Horizontal angle | 2.8 | (1.4) | 1.7 | (0.8) | 1.0 | (0.0) | 1.7 | (0.8) | 2.9 | (1.5) |
Knee | ||||||||||
Sagittal angle | 1.9 | (0.8) | 1.3 | (0.4) | 1.0 | (0.0) | 1.3 | (0.5) | 2.2 | (0.9) |
Frontal angle | 2.5 | (1.4) | 1.5 | (0.8) | 1.0 | (0.0) | 1.6 | (0.8) | 2.7 | (1.5) |
Horizontal angle | 2.7 | (1.9) | 1.6 | (1.0) | 1.0 | (0.0) | 1.5 | (0.9) | 2.4 | (1.7) |
Ankle | ||||||||||
Sagittal angle | 1.3 | (0.5) | 1.1 | (0.3) | 1.0 | (0.0) | 1.2 | (0.3) | 1.5 | (0.6) |
Frontal angle | 1.9 | (1.0) | 1.3 | (0.5) | 1.0 | (0.0) | 1.3 | (0.5) | 1.9 | (0.9) |
Horizontal angle | 3.2 | (2.5) | 1.8 | (1.3) | 1.0 | (0.0) | 1.8 | (1.3) | 3.1 | (2.5) |
Condition | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
M20 | M10 | ZERO | P10 | P20 | ||||||
Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | |
NRMSE (Unit: %) | ||||||||||
Hip | ||||||||||
Sagittal moment | 9.1 | (2.5) | 6.8 | (2.4) | 6.0 | (2.5) | 7.3 | (3.2) | 10.2 | (4.1) |
Frontal moment | 20.3 | (5.5) | 11.7 | (4.7) | 8.5 | (4.4) | 13.0 | (7.8) | 20.9 | (10.2) |
Horizontal moment | 36.3 | (13.4) | 19.9 | (7.7) | 8.4 | (3.8) | 20.1 | (7.5) | 37.2 | (13.4) |
Knee | ||||||||||
Sagittal moment | 15.5 | (8.8) | 11.3 | (7.0) | 9.2 | (5.4) | 10.6 | (5.0) | 14.6 | (5.3) |
Frontal moment | 22.0 | (13.8) | 16.3 | (11.2) | 13.0 | (8.2) | 14.4 | (6.5) | 20.2 | (6.3) |
Horizontal moment | 11.3 | (4.8) | 9.1 | (4.6) | 8.0 | (4.8) | 9.6 | (5.8) | 13.6 | (7.3) |
Ankle | ||||||||||
Sagittal moment | 5.5 | (2.4) | 5.1 | (2.2) | 4.8 | (2.2) | 5.1 | (2.2) | 6.2 | (2.3) |
Frontal moment | 40.4 | (13.8) | 28.1 | (10.7) | 25.0 | (16.7) | 33.5 | (27.0) | 49.1 | (35.3) |
Horizontal moment | 14.9 | (8.8) | 12.3 | (8.2) | 11.2 | (7.4) | 12.1 | (7.0) | 14.7 | (6.9) |
Ratio of NRMSE | ||||||||||
Hip | ||||||||||
Sagittal moment | 1.7 | (0.6) | 1.2 | (0.3) | 1.0 | (0.0) | 1.3 | (0.3) | 1.8 | (0.7) |
Frontal moment | 3.0 | (1.5) | 1.7 | (0.9) | 1.0 | (0.0) | 1.7 | (0.9) | 2.9 | (1.5) |
Horizontal moment | 4.8 | (2.0) | 2.6 | (1.0) | 1.0 | (0.0) | 2.6 | (1.0) | 5.0 | (2.1) |
Knee | ||||||||||
Sagittal moment | 1.8 | (0.8) | 1.3 | (0.4) | 1.0 | (0.0) | 1.3 | (0.4) | 1.8 | (0.8) |
Frontal moment | 1.9 | (1.0) | 1.3 | (0.5) | 1.0 | (0.0) | 1.3 | (0.6) | 2.0 | (1.1) |
Horizontal moment | 1.6 | (0.5) | 1.2 | (0.3) | 1.0 | (0.0) | 1.3 | (0.4) | 1.9 | (0.8) |
Ankle | ||||||||||
Sagittal moment | 1.2 | (0.3) | 1.1 | (0.2) | 1.0 | (0.0) | 1.1 | (0.3) | 1.4 | (0.5) |
Frontal moment | 2.3 | (1.5) | 1.5 | (0.8) | 1.0 | (0.0) | 1.4 | (0.8) | 2.3 | (1.4) |
Horizontal moment | 1.5 | (0.6) | 1.1 | (0.3) | 1.0 | (0.0) | 1.2 | (0.4) | 1.5 | (0.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inai, T.; Kobayashi, Y.; Sudo, M.; Yamashiro, Y.; Ueda, T. Errors in Estimating Lower-Limb Joint Angles and Moments during Walking Based on Pelvic Accelerations: Influence of Virtual Inertial Measurement Unit’s Frontal Plane Misalignment. Sensors 2024, 24, 5096. https://doi.org/10.3390/s24165096
Inai T, Kobayashi Y, Sudo M, Yamashiro Y, Ueda T. Errors in Estimating Lower-Limb Joint Angles and Moments during Walking Based on Pelvic Accelerations: Influence of Virtual Inertial Measurement Unit’s Frontal Plane Misalignment. Sensors. 2024; 24(16):5096. https://doi.org/10.3390/s24165096
Chicago/Turabian StyleInai, Takuma, Yoshiyuki Kobayashi, Motoki Sudo, Yukari Yamashiro, and Tomoya Ueda. 2024. "Errors in Estimating Lower-Limb Joint Angles and Moments during Walking Based on Pelvic Accelerations: Influence of Virtual Inertial Measurement Unit’s Frontal Plane Misalignment" Sensors 24, no. 16: 5096. https://doi.org/10.3390/s24165096
APA StyleInai, T., Kobayashi, Y., Sudo, M., Yamashiro, Y., & Ueda, T. (2024). Errors in Estimating Lower-Limb Joint Angles and Moments during Walking Based on Pelvic Accelerations: Influence of Virtual Inertial Measurement Unit’s Frontal Plane Misalignment. Sensors, 24(16), 5096. https://doi.org/10.3390/s24165096