Complex Residual Attention U-Net for Fast Ultrasound Imaging from a Single Plane-Wave Equivalent to Diverging Wave Imaging
Abstract
:1. Introduction
- (1)
- A complex residual attention U-Net network (C-Res-Att-UNet) for US image reconstruction from a single PW matching DW imaging quality. This innovative framework leverages the phase information present in complex IQ data to enhance the representation, ultimately reconstructing higher-quality US images.
- (2)
- A custom concatenation layer that takes into account complex data representation and a 2D max-pooling layer dedicated to down-sampling complex-valued data based on the indices of the maximum amplitude of the complex tensor.
- (3)
- A complex up-sampling technique that learns an up-sampling transformation based on sub-pixel convolutions [24] rather than interpolating the real and imaginary parts separately.
- (4)
- An equivalent network that is trained using a real-valued CNN named Res-Att-UNet, which uses B-mode image data.
- (5)
- Evaluation of C-Res-Att-UNet and Res-Att-UNet using a test set from the simulated dataset, in addition to samples from the PICMUS dataset [25] containing in vitro phantom, simulation, and in vivo carotid data.
2. Materials and Methods
2.1. Complex Convolution
2.2. Complex Concatenation Layer
2.3. Complex Max-Pooling Layer
2.4. Complex Up-Sampling Layer
2.5. Proposed Network
3. Experiment
3.1. Dataset Acquisition
3.2. Network Training
3.3. Evaluation Metrics
4. Results
4.1. Learning Convergence
4.2. Image Quality
4.3. Lateral Resolution
4.4. Computational Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sandrin, L.; Catheline, S.; Tanter, M.; Hennequin, X.; Fink, M. Time-resolved pulsed elastography with ultrafast ultrasonic imaging. Ultrason. Imaging 1999, 21, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Kanai, H. High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming. J. Med. Ultrason. 2011, 38, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Trees, H. Optimum Array Processing—Part IV of Detection, Estimation, and Modulation Theory; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Perrot, V.; Polichetti, M.; Varray, F.; Garcia, D. So you think you can DAS? A viewpoint on delay-and-sum beamforming. Ultrasonics 2021, 111, 106309. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015. Proceedings, Part III. pp. 234–241. [Google Scholar]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Chen, X.; Ding, M. Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Opt. Int. J. Light Electron Opt. 2014, 125, 4057–4063. [Google Scholar] [CrossRef]
- Cheng, J.Z.; Ni, D.; Chou, Y.H.; Qin, J.; Tiu, C.M.; Chang, Y.C.; Huang, C.S.; Shen, D.; Chen, C.M. Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 2016, 6, 24454. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.H.; Ye, J.C. Deep Learning for Accelerated Ultrasound Imaging. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 6673–6676. [Google Scholar] [CrossRef]
- Luijten, B.; Cohen, R.; de Bruijn, F.J.; Schmeitz, H.A.; Mischi, M.; Eldar, Y.C.; van Sloun, R.J. Deep Learning for Fast Adaptive Beamforming. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1333–1337. [Google Scholar] [CrossRef]
- Gasse, M.; Millioz, F.; Roux, E.; Garcia, D.; Liebgott, H.; Friboulet, D. High-Quality Plane Wave Compounding Using Convolutional Neural Networks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1637–1639. [Google Scholar] [CrossRef] [PubMed]
- Hyun, D.; Brickson, L.L.; Looby, K.T.; Dahl, J.J. Beamforming and Speckle Reduction Using Neural Networks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 898–910. [Google Scholar] [CrossRef] [PubMed]
- Simson, W.; Paschali, M.; Navab, N.; Zahnd, G. Deep Learning Beamforming for Sub-Sampled Ultrasound Data. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–24 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Nair, A.A.; Tran, T.D.; Reiter, A.; Lediju Bell, M.A. A Deep Learning Based Alternative to Beamforming Ultrasound Images. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 3359–3363. [Google Scholar] [CrossRef]
- Hirose, A.; Yoshida, S. Generalization Characteristics of Complex-Valued Feedforward Neural Networks in Relation to Signal Coherence. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Sarroff, A.M.; Shepardson, V.; Casey, M.A. Learning representations using complex-valued nets. arXiv 2015, arXiv:1511.06351. [Google Scholar]
- Senouf, O.; Vedula, S.; Zurakhov, G.; Bronstein, A.; Zibulevsky, M.; Michailovich, O.; Adam, D.; Blondheim, D. High frame-rate cardiac ultrasound imaging with deep learning. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; Springer: Berlin/Heidelberg, Germany, 2018. Proceedings, Part I. pp. 126–134. [Google Scholar]
- Trabelsi, C.; Bilaniuk, O.; Zhang, Y.; Serdyuk, D.; Subramanian, S.; Santos, J.F.; Mehri, S.; Rostamzadeh, N.; Bengio, Y.; Pal, C.J. Deep complex networks. arXiv 2017, arXiv:1705.09792. [Google Scholar]
- Lu, J.; Millioz, F.; Garcia, D.; Salles, S.; Ye, D.; Friboulet, D. Complex convolutional neural networks for fast diverging wave imaging. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Virtual Event, 6–11 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–3. [Google Scholar]
- Lu, J.; Millioz, F.; Garcia, D.; Salles, S.; Ye, D.; Friboulet, D. Complex convolutional neural networks for ultrafast ultrasound imaging reconstruction from in-phase/quadrature signal. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 69, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Zhang, X. Real-Time Ultrasound Image Despeckling Using Mixed-Attention Mechanism Based Residual UNet. IEEE Access 2020, 8, 195327–195340. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. arXiv 2016, arXiv:cs.CV/1609.05158. [Google Scholar]
- Liebgott, H.; Rodriguez-Molares, A.; Cervenansky, F.; Jensen, J.; Bernard, O. Plane-Wave Imaging Challenge in Medical Ultrasound. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Garcia, D. SIMUS: An open-source simulator for medical ultrasound imaging. Part I: Theory & examples. Comput. Methods Programs Biomed. 2022, 218, 106726. [Google Scholar]
- Cigier, A.; Varray, F.; Garcia, D. SIMUS: An open-source simulator for medical ultrasound imaging. Part II: Comparison with four simulators. Comput. Methods Programs Biomed. 2022, 220, 106774. [Google Scholar] [CrossRef]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 27 March 2015).
- Dramsch, J.S.; Trabelski, C.; Bilaniuk, O.; Serdyuk, D. Complex-Valued Neural Networks in Keras with Tensorflow. 2019. Available online: https://keras-complex.readthedocs.io/ (accessed on 7 September 2019). [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Rindal, O.M.H.; Åsen, J.P.; Holm, S.; Austeng, A. Understanding contrast improvements from capon beamforming. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 1694–1697. [Google Scholar] [CrossRef]
Method | Hyperechoic Region CNR | Anechoic Region CNR | SSIM | PSNR |
---|---|---|---|---|
DAS (1 PW) | 1.183 | 1.061 | 0.227 | 14.35 |
Res-Att-UNet (1 PW) | 1.278 | 1.012 | 0.825 | 23.86 |
C-Res-Att-UNet (1 PW) | 1.314 | 0.994 | 0.836 | 21.74 |
Standard compounding (20 DWs) | 1.220 | 0.940 | 1 | ∞ |
Method | CNR | SSIM | PSNR |
---|---|---|---|
DAS (1 PW) | 1.120 | 0.489 | 11.316 |
Res-Att-UNet (1 PW) | 1.157 | 0.673 | 17.446 |
C-Res-Att-UNet (1 PW) | 0.919 | 0.718 | 17.611 |
Standard compounding (75 DWs) | 1.0241 | 1 | ∞ |
Model | Number of Parameters | Training Time | Inference Time (GPU) |
---|---|---|---|
Res-Att-UNet | 29 million | 50 min | 2 ms |
C-Res-Att-UNet | 31 million | 5.5 h | 6 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentaleb, A.; Sintes, C.; Conze, P.-H.; Rousseau, F.; Guezou-Philippe, A.; Hamitouche, C. Complex Residual Attention U-Net for Fast Ultrasound Imaging from a Single Plane-Wave Equivalent to Diverging Wave Imaging. Sensors 2024, 24, 5111. https://doi.org/10.3390/s24165111
Bentaleb A, Sintes C, Conze P-H, Rousseau F, Guezou-Philippe A, Hamitouche C. Complex Residual Attention U-Net for Fast Ultrasound Imaging from a Single Plane-Wave Equivalent to Diverging Wave Imaging. Sensors. 2024; 24(16):5111. https://doi.org/10.3390/s24165111
Chicago/Turabian StyleBentaleb, Ahmed, Christophe Sintes, Pierre-Henri Conze, François Rousseau, Aziliz Guezou-Philippe, and Chafiaa Hamitouche. 2024. "Complex Residual Attention U-Net for Fast Ultrasound Imaging from a Single Plane-Wave Equivalent to Diverging Wave Imaging" Sensors 24, no. 16: 5111. https://doi.org/10.3390/s24165111
APA StyleBentaleb, A., Sintes, C., Conze, P. -H., Rousseau, F., Guezou-Philippe, A., & Hamitouche, C. (2024). Complex Residual Attention U-Net for Fast Ultrasound Imaging from a Single Plane-Wave Equivalent to Diverging Wave Imaging. Sensors, 24(16), 5111. https://doi.org/10.3390/s24165111