Machine Learning-Based Classification of Soil Parent Materials Using Elemental Concentration and Vis-NIR Data
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area and Soil Sampling
2.2. Soil Instrumental and Spectroradiometric Analyses
2.2.1. ICP Analyses
2.2.2. XRF Analyses
2.2.3. Vis-NIR Analyses
2.3. Feature Selection with Relief Method
2.4. Classification
2.4.1. Methods Used in Classification
2.4.2. Performance Evaluation Metrics
3. Results and Discussion
3.1. Total Elements
3.2. Spectral Features
3.3. Classification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guedes, A.; Ribeiro, H.; Valentim, B.; Rodrigues, A.; Sant’Ovaia, H.; Abreu, I.; Noronha, F. Characterization of soils from the Algarve region (Portugal): A multidisciplinary approach for forensic applications. Sci. Justice 2011, 51, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Kumar, R.; Sharma, V. Soil forensics: A spectroscopic examination of trace evidence. Microchem. J. 2018, 139, 74–84. [Google Scholar] [CrossRef]
- Aydın, Y.; Işıkdağ, Ü.; Bekdaş, G.; Nigdeli, S.M.; Geem, Z.W. Use of Machine Learning Techniques in Soil Classification. Sustainability 2023, 15, 2374. [Google Scholar] [CrossRef]
- Fitzpatrick, R.W. Demands on Soil Classification and Soil Survey Strategies: Special-Purpose Soil Classification Systems for Local Practical Use. In Developments in Soil Classification, Land Use Planning and Policy Implications; Shahid, S., Taha, F., Abdelfattah, M., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Pye, K.; Blott, S.J.; Croft, D.J.; Witton, S.J. Discrimination between sediment and soil samples for forensic purposes using elemental data: An investigation of particle size effects. Forensic Sci. Int. 2007, 167, 30–42. [Google Scholar] [CrossRef]
- Reidy, L.; Bu, K.; Godfrey, M.; Cizdziel, J.V. Elemental fingerprinting of soils using ICP-MS and multivariate statistics: A study for and by forensic chemistry majors. Forensic Sci. Int. 2013, 233, 37–44. [Google Scholar] [CrossRef]
- Menchaca, P.R.; Graham, R.C.; Younglove, T. Developing and Testing a Soil Property Database for Forensic Applications in Southern California. J. Forensic Sci. 2018, 63, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Menšík, L.; Hlisnikovský, L.; Nerušil, P.; Kunzová, E. Comparison of the Concentration of Risk Elements in Alluvial Soils Determined by pXRF In Situ, in the Laboratory, and by ICP-OES. Agronomy 2021, 11, 938. [Google Scholar] [CrossRef]
- Sangwan, P.; Nain, T.; Singal, K.; Hooda, N.; Sharma, N. Soil as a tool of revelation in forensic science: A review. Anal. Methods 2020, 12, 5150–5159. [Google Scholar] [CrossRef] [PubMed]
- Badía, D.; Martí, C.; Casanova, J.; Gillot, T.; Cuchí, J.A.; Palacio, J.; Andrés, R. A Quaternary soil chronosequence study on the terraces of the Alcanadre River (semiarid Ebro Basin, NE Spain). Geoderma 2015, 241–242, 158–167. [Google Scholar] [CrossRef]
- Zhang, Y.; Hartemink, A.E. Data fusion of vis–NIR and PXRF spectra to predict soil physical and chemical properties. Eur. J. Soil Sci. 2020, 71, 316–333. [Google Scholar] [CrossRef]
- Benedet, L.; Acuña-Guzman, S.F.; Faria, W.M.; Silva, S.H.; Mancini, M.; dos Santos Teixeira, A.F.; Pierangeli, L.M.; Júnior, F.W.; Gomide, L.R.; Júnior, A.L.; et al. Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms. Catena 2021, 197, 105003. [Google Scholar] [CrossRef]
- Zhu, Y.; Weindorf, D.C.; Zhang, W. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma 2011, 167–168, 167–177. [Google Scholar] [CrossRef]
- Stockmann, U.; Cattle, S.R.; Minasny, B.; McBratney, A.B. Utilizing porf X-ray fluorescence spectrometry for in-field investigation of pedogenesis. Catena 2016, 139, 220–231. [Google Scholar] [CrossRef]
- Tavares, T.R.; Molin, J.P.; Javadi, S.H.; Carvalho, H.W.P.d.; Mouazen, A.M. Combined Use of Vis-NIR and XRF Sensors for Tropical Soil Fertility Analysis: Assessing Different Data Fusion Approaches. Sensors 2021, 21, 148. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, C.; Xiao, C.; Shang, K.; Zhang, Y.; Pan, X. Prediction of multiple soil fertility parameters using VisNIR spectroscopy and PXRF spectrometry. Soil Sci. Soc. Am. J. 2021, 85, 591–605. [Google Scholar] [CrossRef]
- Bellinaso, H.; Demattê, J.A.M.; Romeiro, S.A. Soil Spectral Library and Its Use In Soil Classification. Rev. Bras. Ciência Solo 2010, 34, 861–870. [Google Scholar] [CrossRef]
- Oliveira, J.F.; Brossard, M.; Vendrame, P.R.S.; Mayi, S.; Corazza, E.J.; Marchão, R.L.; Guimarães, M.F. Soil discrimination using diffuse reflectance Vis–NIR spectroscopy in a local toposequence. C. R. Geosci. 2013, 345, 446–453. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Zhang, X.; Yu, S.; Dou, X.; Xie, Y.; Wang, N. Allocate soil individuals to soil classes with topsoil spectral characteristics and decision trees. Geoderma 2018, 320, 12–22. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.K.; Li, H.X.; Zhang, X.L.; Liu, H.J.; Dou, X.; Yu, Z.Y. The minimum level for soil allocation using topsoil reflectance spectra: Genus or species? Catena 2019, 174, 36–47. [Google Scholar] [CrossRef]
- Bilgili, A.V.; Yeşilnacar, İ.; Akihiko, K.; Nagano, T.; Aydemir, A.; Hızlı, H.S.; Bilgili, A. Post-irrigation degradation of land and environmental resources in the Harran plain, southeastern Turkey. Environ. Monit. Assess. 2018, 190, 660. [Google Scholar] [CrossRef] [PubMed]
- Soil Survey Division Staff. Soil Survey Manual; US Department of Agriculture Handbook 18; Soil Conservation Service: Washington, DC, USA, 1993.
- İnci, Y.; Bilgili, A.V.; Gündoğan, R. Spectral characterization and estimation of soil properties formed on different parent materials with VNIRS technique for forensic science. Harran J. Agric. Food Sci. 2021, 25, 497–513. [Google Scholar] [CrossRef]
- Karadag, K.; Tenekeci, M.E.; Taşaltın, R.; Bilgili, A. Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance. Sustain. Comput. Inform. Syst. 2019, 28, 100299. [Google Scholar] [CrossRef]
- Aydemir, O.; Kayikcioglu, T. Comparing common machine learning classifiers in low-dimensional feature vectors for brain computer interface applications. Int. J. Innov. Comput. Inf. Control 2013, 9, 1145–1157. [Google Scholar]
- Van Dam, R.L.; Bruce, J.; Harrison, J.; Hirschfeld, D.A.; Meglich, T.M.; North, R.E. Mineralogy and Magnetic Properties of Basaltic Substrate Soils: Kaho’olawe and Big Island, Hawaii. Soil Sci. Soc. Am. J. 2008, 72, 244–257. [Google Scholar] [CrossRef]
- Saaltink, R.; Griffioen, J.; Mol, G.; Birke, M. Geogenic and agricultural controls on the geochemical composition of European agricultural soils. J. Soils Sediments 2014, 14, 121–137. [Google Scholar] [CrossRef]
- Heidari, A.; Osat, M.; Konyushkova, M.V. Geochemical indices as efficient tools for assessing the soil weathering status in relation to soil taxonomic classes. Catena 2022, 208, 105716. [Google Scholar] [CrossRef]
- İnci, Y.; Bilgili, A.V.; Gündoğan, R.; Kadıoğlu, Y.K. Comparision of XRF and ICP-OES methods to determine total element concentrations of soils formed on different parent materials in the Sanliurfa province of Turkey. Harran Tarım Ve Gıda Bilimleri Dergisi 2023, 27, 277–292. [Google Scholar] [CrossRef]
- Lazaar, A.; Mouazen, A.M.; Hammouti, K.E.L.; Fullen, M.; Pradhan, B.; Memon, M.S.; Andich, K.; Monir, A. The application of proximal visible and near-infrared spectroscopy to estimate soil organic matter on the Triffa Plain of Morocco. Int. Soil Water Conserv. Res. 2020, 8, 195–204. [Google Scholar] [CrossRef]
- Yakar, Y.; Karadağ, K. Identifying olive oil fraud and adulteration using machine learning algorithms. Química Nova 2023, 45, 1245–1250. [Google Scholar] [CrossRef]
- Mancini, M.; Weindorf, D.C.; Silva, H.G.; Chakraborty, S.; Teixeira, F.D.S.; Guilherme, L.B.G.; Curi, N. Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil. Geoderma 2019, 354, 113885. [Google Scholar] [CrossRef]
- Chala, A.T.; Ray, R. Assessing the Performance of Machine Learning Algorithms for Soil Classification Using Cone Penetration Test Data. Appl. Sci. 2023, 13, 5758. [Google Scholar] [CrossRef]
- Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81, 401–418. [Google Scholar] [CrossRef]
- Tiruneh, G.A.; Meshesha, D.T.; Adgo, E.; Tsunekawa, A.; Haregeweyn, N.; Fenta, A.A.; Belay, A.W.; Tadesse, N.; Fekadu, G.; Reichert, J.M. Use of soil spectral reflectance to estimate texture and fertility affected by land management practices in Ethiopian tropical highland. PLoS ONE 2022, 17, e0270629. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Huynh, C.; Vu, H. Classification of Soils into Hydrologic Groups Using Machine Learning. Data 2020, 5, 2. [Google Scholar] [CrossRef]
- Gozukara, G.; Zhang, Y.; Hartemink, A.E. Using pXRF and vis-NIR spectra for predicting properties of soils developed in loess. Pedosphere 2022, 32, 602–615. [Google Scholar] [CrossRef]
- Brown, D.J.; Shepherd, K.D.; Walsh, M.G.; Mays, M.D.; Reinsch, T.G. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 2006, 132, 273–290. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Balafoutis, A.; Zalidis, G.; Bochtis, D. From Laboratory to Proximal Sensing Spectroscopy for Soil Organic Carbon Estimation—A Review. Sustainability 2020, 12, 443. [Google Scholar] [CrossRef]
Profile No. | Number of Samples † | Elevation (m) | Slope (%) | Soil Orders | Parent Material | Land Use |
---|---|---|---|---|---|---|
1 | 4 | 368 | 0–2 | Typic Haploxerept | Mudflow | Irrigated agriculture |
2 | 4 | 365 | 0–2 | Fluventic Haploxerept | Mudflow | Irrigated agriculture |
3 | 4 | 446 | 0–2 | Aridic Haploxerert | Mudflow | Irrigated agriculture |
4 | 6 | 644 | 0–2 | Typic Haploxerept | Limestone | Field crops |
5 | 7 | 599 | 0–2 | Typic Haploxerept | Limestone | Field crops |
6 | 6 | 586 | 2–4 | Typic Haploxerept | Limestone | Semi-arid |
7 | 5 | 658 | 2–4 | Litic Haploxerept | Marn | Semi-arid |
8 | 7 | 715 | 2–4 | Typic Haploxerept | Marn | Pistachio |
9 | 6 | 550 | 2–4 | Typic Haploxerept | Marn | Semi-arid |
10 | 7 | 1424 | 1–2 | Typic Haploxerept | Basalt | Pasture |
11 | 7 | 1031 | 2–4 | Typic Haploxerept | Basalt | Pasture |
12 | 6 | 612 | 0–2 | Aridic Haploxerert | Basalt | Field crops |
Power | 1350 watts |
Plasma gas flow | 15 L/min |
Auxiliary gas flow | 1.5 L/min |
Nebulizer gas flow | 0.75 L/min |
Pump speed | 15 rpm |
Sample flow rate | 1.5 mL/min |
Total Elements | ICP–OES | XRF | ||||||
---|---|---|---|---|---|---|---|---|
Mudflow | Limestone | Marn | Basalt | Mudflow | Limestone | Marn | Basalt | |
SiO2 (%) | 0.07 ± 0.05 a† (0.05–0.11) | 0.07 ± 0.05 a (0.05–0.10) | 0.09 ± 0.04 a (0.06–0.11) | 0.10 ± 0.03 a (0.08–0.12) | 42.57 ± 5.90 b (38.6–46.5) | 52.32 ± 9.81 a (47.7–56.9) | 24.87 ± 6.39 c (21.7–28.1) | 56.4 ± 3.36 a (54.8–58.0) |
Al2O3 (%) | 2.98 ± 0.99 b (2.35–3.62) | 4.48 ± 1.36 a (8.84–5.12) | 2.37 ± 1.24 b (1.75–2.99) | 5.04 ± 1.46 a (4.35–5.72) | 8.72 ± 1.09 c (38.6–46.5) | 12.14 ± 1.88 a (38.6–46.5) | 5.72 ± 2.06 d (38.6–46.5) | 10.95 ± 0.79 b (38.6–46.5) |
CaO (%) | 8.65 ± 3.29 b (6.56–10.75) | 4.50 ± 5.00 c (2.16–6.84) | 25.16 ± 9.39 a (20.49–29.8) | 1.26 ± 1.22 c (0.68–1.83) | 18.68 ± 4.29 b (15.8–21.6) | 8.39 ± 8.63 c (4.4–12.4) | 32.13 ± 8.75 a (27.8–36.5) | 3.53 ± 1.60 d (2.8–4.3) |
Fe2O3 (%) | 2.81 ± 0.82 c (2.28–3.33) | 4.16 ± 1.38 b (3.51–4.81) | 2.63 ± 0.87 c (2.19–3.06) | 5.29 ± 1.91 a (4.40–6.19) | 5.46 ± 0.66 c (5.0–5.9) | 7.59 ± 1.29 b (6.9–8.2) | 3.78 ± 1.07 d (3.3–4.3) | 11.43 ± 3.08 a (9.9–12.9) |
MgO (%) | 1.03 ± 0.30 b (0.84–1.22) | 1.03 ± 0.28 b (0.89–1.16) | 0.72 ± 0.38 c (0.53–0.91) | 1.40 ± 0.28 a (1.26–1.53) | 3.05 ± 0.17 a (2.9–3.2) | 2.40 ± 0.41 b (2.2–2.5) | 1.73 ± 0.65 c (1.4–2.1) | 2.29 ± 0.42 b (2.1–2.4) |
K2O (%) | 0.23 ± 0.12 a (0.15–0.31) | 0.25 ± 0.09 a (0.20–0.29) | 0.16 ± 0.08 b (0.12–0.20) | 0.20 ± 0.07 ab (0.17–0.23) | 1.29 ± 0.29 a (1.1–1.5) | 1.52 ± 0.26 a (1.4–1.6) | 0.89 ± 0.27 b (0.7–1.0) | 1.24 ± 0.70 a (0.1–1.6) |
P2O5 (%) | 0.003 ± 0.0014 b (0.002–0.004) | 0.006 ± 0.002 a (0.005–0.007) | 0.003 ± 0.0022 b (0.001–0.004) | 0.006 ± 0.002 a (0.005–0.007) | 0.15 ± 0.03 b (0.12–0.17) | 0.17 ± 0.04 b (0.14–0.19) | 0.17 ± 0.11 b (0.11–0.23) | 0.37 ± 0.31 a (0.2–0.5) |
MnO (%) | 0.05 ± 0.02 b (0.04–0.07) | 0.10 ± 0.04 a (0.08–1.12) | 0.05 ± 0.02 b (0.03–0.06) | 0.11 ± 0.04 a (0.09–0.13) | 0.11 ± 0.02 b (0.09–0.12) | 0.16 ± 0.04 a (0.14–0.18) | 0.07 ± 0.02 c (0.06–0.08) | 0.17 ± 0.04 a (0.15–0.20) |
Classification Techniques | Validation Approach | Error Metrics | Datasets | ||
---|---|---|---|---|---|
ICP–OES | Vis-NIR | XRF | |||
SVM | CV-5 † | Acc. | 0.77 | 0.97 | 0.91 |
F_Score | 0.67 | 0.99 | 0.95 | ||
G_Mean | 0.82 | 0.96 | 0.95 | ||
Random partitioning ‡ | Acc. | 0.86 | 0.96 | 0.92 | |
F_Score | 1 | 0.96 | 1 | ||
G_Mean | 1 | 0.96 | 1 | ||
Profile-Based Training and Surrounding Validation Method β | Acc. | 0.76 | 0.80 | 0.74 | |
F_Score | 0.70 | 0.67 | 0.63 | ||
G_Mean | 0.83 | 0.83 | 0.80 | ||
ESKNN | CV-5 | Acc. | 0.74 | 0.99 | 0.94 |
F_Score | 0.54 | 0.99 | 0.95 | ||
G_Mean | 0.69 | 0.99 | 0.95 | ||
Random partitioning | Acc. | 0.79 | 0.98 | 1 | |
F_Score | 0.40 | 0.96 | 1 | ||
G_Mean | 0.62 | 0.99 | 1 | ||
Profile-Based Training and Surrounding Validation Method | Acc. | 0.64 | 0.76 | 0.65 | |
F_Score | 0.67 | 0.67 | 0.70 | ||
G_Mean | 0.84 | 0.80 | 0.86 | ||
EBT | CV-5 | Acc. | 0.79 | 0.80 | 0.90 |
F_Score | 0.64 | 0.67 | 0.91 | ||
G_Mean | 0.78 | 0.76 | 0.94 | ||
Random partitioning | Acc. | 0.71 | 0.81 | 0.77 | |
F_Score | 0.67 | 0.64 | 1 | ||
G_Mean | 0.71 | 0.76 | 1 | ||
Profile-Based Training and Surrounding Validation Method | Acc. | 0.57 | 0.69 | 0.62 | |
F_Score | 0.58 | 0.58 | 0.58 | ||
G_Mean | 0.77 | 0.73 | 0.81 |
Datasets | The Most Effective 5 Features |
---|---|
ICP-OES | CaO, Fe2O3, Al2O3, MgO, and MnO |
Vis-NIR | 567, 572, 573, 571, and 574 nm |
XRF | SiO2, CaO, Fe2O3, Al2O3, and MnO |
Classification Techniques | Validation Approach | Error Metrics | Datasets | ||
---|---|---|---|---|---|
ICP-OES | Vis-NIR | XRF | |||
SVM | CV-5 † | Acc. | 0.70 | 0.71 | 0.88 |
F_Score | 0.60 | 0.48 | 0.63 | ||
G_Mean | 0.76 | 0.62 | 0.67 | ||
Random partitioning ‡ | Acc. | 0.86 | 0.77 | 0.92 | |
F_Score | 0.80 | 0.53 | 1 | ||
G_Mean | 0.94 | 0.63 | 1 | ||
Profile-Based Training and Surrounding Validation Method β | Acc. | 0.65 | 0.76 | 0.62 | |
F_Score | 0.63 | 0.63 | 0.53 | ||
G_Mean | 0.76 | 0.79 | 0.72 | ||
ESKNN | CV-5 | Acc. | 0.70 | 0.93 | 0.93 |
F_Score | 0.56 | 0.86 | 0.86 | ||
G_Mean | 0.74 | 0.90 | 0.89 | ||
Random partitioning | Acc. | 0.79 | 0.93 | 1 | |
F_Score | 0.57 | 0.86 | 1 | ||
G_Mean | 0.82 | 0.95 | 1 | ||
Profile-Based Training and Surrounding Validation Method | Acc. | 0.53 | 0.74 | 0.59 | |
F_Score | 0.54 | 0.64 | 0.60 | ||
G_Mean | 0.73 | 0.78 | 0.79 | ||
EBT | CV-5 | Acc. | 0.71 | 0.89 | 0.88 |
F_Score | 0.56 | 0.83 | 0.83 | ||
G_Mean | 0.67 | 0.89 | 0.92 | ||
Random partitioning | Acc. | 0.71 | 0.91 | 0.85 | |
F_Score | 0.50 | 0.92 | 1 | ||
G_Mean | 0.66 | 0.97 | 1 | ||
Profile-Based Training and Surrounding Validation Method | Acc. | 0.52 | 0.66 | 0.53 | |
F_Score | 0.56 | 0.51 | 0.58 | ||
G_Mean | 0.76 | 0.68 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
İnci, Y.; Bilgili, A.V.; Gündoğan, R.; Gözükara, G.; Karadağ, K.; Tenekeci, M.E. Machine Learning-Based Classification of Soil Parent Materials Using Elemental Concentration and Vis-NIR Data. Sensors 2024, 24, 5126. https://doi.org/10.3390/s24165126
İnci Y, Bilgili AV, Gündoğan R, Gözükara G, Karadağ K, Tenekeci ME. Machine Learning-Based Classification of Soil Parent Materials Using Elemental Concentration and Vis-NIR Data. Sensors. 2024; 24(16):5126. https://doi.org/10.3390/s24165126
Chicago/Turabian Styleİnci, Yüsra, Ali Volkan Bilgili, Recep Gündoğan, Gafur Gözükara, Kerim Karadağ, and Mehmet Emin Tenekeci. 2024. "Machine Learning-Based Classification of Soil Parent Materials Using Elemental Concentration and Vis-NIR Data" Sensors 24, no. 16: 5126. https://doi.org/10.3390/s24165126
APA Styleİnci, Y., Bilgili, A. V., Gündoğan, R., Gözükara, G., Karadağ, K., & Tenekeci, M. E. (2024). Machine Learning-Based Classification of Soil Parent Materials Using Elemental Concentration and Vis-NIR Data. Sensors, 24(16), 5126. https://doi.org/10.3390/s24165126