Improved Non-Negative Matrix Factorization-Based Noise Reduction of Leakage Acoustic Signals
Abstract
:1. Introduction
2. INMF-Based Noise Reduction Algorithm
2.1. INMF Algorithm
2.2. Improved Adaptive MMSE-LSA Algorithm
2.3. Principle of INMF Noise Reduction Algorithm
3. Experiments and Analysis of Results
3.1. Experimental Parameter Setting
3.2. Experimental Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, T.; Chen, L.; Sun, W.; Zhao, L.; Dong, M.; Wang, X.; Guo, W.; Cheng, Y. Development of a new very low helium gas flow generation and measurement system. Vacuum 2022, 206, 22–35. [Google Scholar] [CrossRef]
- Wainner, R.T.; Aubut, N.F.; Laderer, M.C.; Frish, M.B. Scanning, standoff TDLAS leak imaging and quantification. In Next-Generation Spectroscopic Technologies X; SPIE: Bellingham, WA, USA, 2017; Volume 10210, pp. 29–39. [Google Scholar]
- Hagen, N. Survey of autonomous gas leak detection and quantification with snapshot infrared spectral imaging. J. Opt. 2020, 22, 23–34. [Google Scholar] [CrossRef]
- Stajanca, P.; Chruscicki, S.; Homann, T.; Seifert, S.; Schmidt, D.; Habib, A. Detection of Leak-Induced Pipeline Vibrations Using Fiber-Optic Distributed Acoustic Sensing. Sensors 2018, 18, 2841. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, H.; Pei, H.; Li, Z. Leakage detection of HVAC pipeline network based on pressure signal diagnosis. Build. Simul. 2019, 12, 617–628. [Google Scholar] [CrossRef]
- Yu, L.; Li, S.Z. Acoustic emission (AE) based small leak detection of galvanized steel pipe due to loosening of screw thread connection. Appl. Acoust. 2017, 120, 5–9. [Google Scholar] [CrossRef]
- Thiemann, J.; Kabal, P. Low distortion acoustic noise suppression using a perceptual model for speech signals. In Proceedings of the Speech Coding, 2002, IEEE Workshop Proceedings, Ibaraki, Japan, 9 October 2002; pp. 172–174. [Google Scholar]
- Chen, J.; Benesty, J.; Huang, Y.; Doclo, S. New insights into the noise reduction Wiener filter. IEEE Trans. Audio Speech Lang. Process. 2006, 14, 1218–1234. [Google Scholar] [CrossRef]
- Ephraim, Y.; Malah, D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 1109–1121. [Google Scholar] [CrossRef]
- Li, H.; Chu, L.; Lu, J.; Liu, Q.; Li, F.; Zhang, K. SVD-VMD algorithm and its application in leak detection of natural gas pipeline. Pet. Sci. Technol. 2022, 41, 230–255. [Google Scholar] [CrossRef]
- Kim, G.; Lu, Y.; Hu, Y.; Loizou, P.C. An algorithm that improves speech intelligibility in noise for normal-hearing listeners. J. Acoust. Soc. Am. 2009, 126, 1486–1494. [Google Scholar] [CrossRef]
- Qian, K.; Zhang, Y.; Chang, S.; Yang, X.; Florêncio, D.; Hasegawa-Johnson, M. Speech Enhancement Using Bayesian Wavenet. In Proceedings of the Interspeech, Stockholm, Sweden, 20–24 August 2017. [Google Scholar]
- Zhang, L.; Chen, Z.; Zheng, M.; He, X. Robust non-negative matrix factorization. Front. Electr. Electron. Eng. China 2011, 6, 192–200. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L. Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4267–4279. [Google Scholar] [CrossRef]
- O’Grady, P.D.; Pearlmutter, B.A. Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint. Neurocomputing 2008, 72, 88–101. [Google Scholar] [CrossRef]
- Chung, H.; Plourde, E.; Champagne, B. Regularized NMF-based speech enhancement with spectral components modeled by gaussian mixtures. In Proceedings of the 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Reims, France, 21–24 September 2014; pp. 1–6. [Google Scholar]
- Hale, E.T.; Yin, W.; Zhang, Y. Fixed-point continuation for 1-minimization: Methodology and convergence. SIAM J. Optim. 2008, 19, 1107–1130. [Google Scholar] [CrossRef]
- Benjebbour, A.; Saito, Y.; Kishiyama, Y.; Li, A.; Harada, A.; Nakamura, T. Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In Proceedings of the 2013 International Symposium on Intelligent Signal Processing and Communication Systems, Naha, Japan, 12–15 November 2013; pp. 770–774. [Google Scholar]
- Venkataramani, S.; Higa, R.; Smaragdis, P. Performance Based Cost Functions for End-to-End Speech Separation. In Proceedings of the 10th Asia-Pacific-Signal-and-Information-Processing-Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018. [Google Scholar]
- Al-Othmani, A.Z.; Manaf, A.A.; Zeki, A.M.; Almaatouk, Q.; Aborujilah, A.; Al-Rashdan, M.T. Correlation Between Speaker Gender and Perceptual Quality of Mobile Speech Signal. In Proceedings of the 14th International Conference on Ubiquitous Information Management and Communication (IMCOM), Sungkyunkwan Univ, Taichung, Taiwan, 3–5 January 2020. [Google Scholar]
- Fang, C.; Chen, Y.; Deng, X.; Lin, X.; Han, Y.; Zheng, J. Denoising method of machine tool vibration signal based on variational mode decomposition and Whale-Tabu optimization algorithm. Sci. Rep. 2023, 13, 1505. [Google Scholar]
Input SNR/dB | Noise | VMD | RNMF | SRNMF | HINMF | INMF |
---|---|---|---|---|---|---|
−10 | Wind | −4.13 | −4.27 | −3.28 | −1.47 | −1.44 |
Rain | −3.62 | −2.97 | −2.62 | −2.32 | −2.02 | |
Bird | −4.14 | −2.78 | −2.66 | −1.40 | −1.32 | |
Cicada | −4.55 | −4.25 | −3.90 | −2.33 | −1.88 | |
−5 | Wind | 0.79 | 0.75 | 1.25 | 1.24 | 1.23 |
Rain | −1.15 | −0.75 | 0.43 | 0.55 | 0.52 | |
Bird | −0.05 | 0.25 | 0.89 | 0.77 | 1.02 | |
Cicada | −1.77 | −0.96 | 0.37 | 0.35 | 0.40 | |
0 | Wind | 5.86 | 5.52 | 6.87 | 6.85 | 6.83 |
Rain | 4.5 | 5.06 | 6.43 | 6.45 | 6.49 | |
Bird | 3.57 | 5.49 | 6.03 | 6.27 | 6.82 | |
Cicada | 3.57 | 4.89 | 6.10 | 6.31 | 6.5 | |
5 | Wind | 8.34 | 8.24 | 9.45 | 9.04 | 9.23 |
Rain | 8.15 | 8.20 | 8.35 | 8.35 | 8.46 | |
Bird | 8.42 | 9.30 | 9.77 | 9.82 | 9.95 | |
Cicada | 7.12 | 8.0 | 8.24 | 8.38 | 8.43 | |
10 | Wind | 13.38 | 13.20 | 14.42 | 13.87 | 14.02 |
Rain | 11.24 | 10.38 | 11.01 | 12.05 | 12.43 | |
Bird | 11.27 | 12.52 | 13.84 | 13.97 | 14.25 | |
Cicada | 10.25 | 10.23 | 12.07 | 12.47 | 12.85 |
Input SNR/dB | Noise | VMD | RNMF | SRNMF | HINMF | INMF |
---|---|---|---|---|---|---|
−10 | Wind | 1.12 | 1.10 | 1.35 | 1.47 | 1.69 |
Rain | 1.07 | 1.09 | 1.21 | 1.39 | 1.45 | |
Bird | 1.05 | 1.10 | 1.18 | 1.34 | 1.41 | |
Cicada | 1.09 | 1.13 | 1.25 | 1.35 | 1.50 | |
−5 | Wind | 1.43 | 1.41 | 1.63 | 1.79 | 1.77 |
Rain | 1.38 | 1.40 | 1.52 | 1.74 | 1.71 | |
Bird | 1.34 | 1.39 | 1.48 | 1.65 | 1.72 | |
Cicada | 1.37 | 1.41 | 1.54 | 1.67 | 0.40 | |
0 | Wind | 1.73 | 1.69 | 1.97 | 2.09 | 2.08 |
Rain | 1.66 | 1.68 | 1.82 | 1.98 | 2.06 | |
Bird | 1.65 | 1.72 | 1.77 | 1.99 | 2.04 | |
Cicada | 1.68 | 1.73 | 1.64 | 1.69 | 2.05 | |
5 | Wind | 2.02 | 2.37 | 2.63 | 2.73 | 2.96 |
Rain | 1.97 | 2.35 | 2.58 | 2.66 | 2.87 | |
Bird | 1.95 | 2.28 | 2.55 | 2.60 | 2.88 | |
Cicada | 1.96 | 2.30 | 2.54 | 2.63 | 2.85 | |
10 | Wind | 2.23 | 2.58 | 2.82 | 2.91 | 3.08 |
Rain | 2.18 | 2.53 | 2.78 | 2.85 | 3.05 | |
Bird | 2.15 | 2.49 | 2.75 | 2.84 | 3.01 | |
Cicada | 2.20 | 2.52 | 2.74 | 2.86 | 3.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Hu, Y.; Wang, Y.; Cai, Z. Improved Non-Negative Matrix Factorization-Based Noise Reduction of Leakage Acoustic Signals. Sensors 2024, 24, 5146. https://doi.org/10.3390/s24165146
Yu Y, Hu Y, Wang Y, Cai Z. Improved Non-Negative Matrix Factorization-Based Noise Reduction of Leakage Acoustic Signals. Sensors. 2024; 24(16):5146. https://doi.org/10.3390/s24165146
Chicago/Turabian StyleYu, Yongsheng, Yongwen Hu, Yingming Wang, and Zhuoran Cai. 2024. "Improved Non-Negative Matrix Factorization-Based Noise Reduction of Leakage Acoustic Signals" Sensors 24, no. 16: 5146. https://doi.org/10.3390/s24165146
APA StyleYu, Y., Hu, Y., Wang, Y., & Cai, Z. (2024). Improved Non-Negative Matrix Factorization-Based Noise Reduction of Leakage Acoustic Signals. Sensors, 24(16), 5146. https://doi.org/10.3390/s24165146