Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD)
Abstract
:1. Introduction
2. Channel and System Models
2.1. Space Quantum Channel Model
2.2. Mathematical Foundations of the Main Processes
- (1)
- GMCS Protocol: The GMCS protocol is a fundamental method in CV-QKD systems, using coherent states of light modulated with Gaussian distributions to encode information in the quadratures of the light. In GMCS, the amplitude and phase of coherent light pulses are modulated with Gaussian-distributed random variables, defining the quantum states. This allows for efficient and high-dimensional encoding of quantum information in a continuous variable space [55,56]:
- (2)
- Homodyne Detection: Once the coherent states are modulated, they are transmitted through the quantum channel to the receiver. At the receiver’s end, techniques such as homodyne detection are employed to measure the quadratures of the received coherent states. Homodyne detection measures the quadrature of the optical field as [57]
- (3)
- Direct Reconciliation (DR) and Reverse Reconciliation (RR): DR and RR are two essential techniques used for error correction and privacy amplification. These techniques are important for ensuring that the quantum key generated between the sender (Alice) and the receiver (Bob) is identical, secure, and free from potential eavesdropping. In DD, the process starts with Alice sending her encoded quantum states to Bob through the quantum channel. Bob then measures the received states. In RR, the roles of Alice and Bob in the reconciliation process are reversed. The secure key length is given by [58]
- (4)
- Integration of PSA and HD: The integration of PSA with HD is used to enhance the performance of CV-QKD systems. PSA can amplify quantum signals while preserving their noise properties, making them particularly useful for compensating for detector imperfections and enhancing the overall detection process. The output quadratures after the amplification are given by [59]
2.3. System Model
3. Security Analysis
3.1. Compensation for Homodyne Detector Noise
3.2. Secret Key Rate under Individual Attack
3.2.1. Direct Reconciliation
3.2.2. Reverse Reconciliation
3.2.3. Signal-to-Noise Ratio (SNR)
4. Numerical Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, F.; Ma, X.; Zhang, Q.; Lo, H.K.; Pan, J.W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002. [Google Scholar] [CrossRef]
- Alshaer, N.; Ismail, T. AI-Driven Quantum Technology for Enhanced 6G networks: Opportunities, Challenges, and Future Directions. J. Laser Sci. Appl. 2024, 1, 21–30. [Google Scholar] [CrossRef]
- Renner, R.; Wolf, R. Quantum advantage in cryptography. AIAA J. 2023, 61, 1895–1910. [Google Scholar] [CrossRef]
- Ali, M.Z.; Abohmra, A.; Usman, M.; Zahid, A.; Heidari, H.; Imran, M.A.; Abbasi, Q.H. Quantum for 6G communication: A perspective. IET Quantum Commun. 2023, 4, 112–124. [Google Scholar] [CrossRef]
- Morris, J.D.; Grimaila, M.R.; Hodson, D.D.; Jacques, D.; Baumgartner, G. A survey of quantum key distribution (QKD) technologies. In Emerging Trends in ICT Security; Elsevier: Amsterdam, The Netherlands, 2014; pp. 141–152. [Google Scholar]
- Bennett, C.H.; Brassard, G. An update on quantum cryptography. In Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, Paris, France, 9–11 April 1984; pp. 475–480. [Google Scholar]
- Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121. [Google Scholar] [CrossRef]
- Scarani, V.; Acin, A.; Ribordy, G.; Gisin, N. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 2004, 92, 057901. [Google Scholar] [CrossRef] [PubMed]
- Ralph, T.C. Continuous variable quantum cryptography. Phys. Rev. A 1999, 61, 010303. [Google Scholar] [CrossRef]
- Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 2000, 61, 022309. [Google Scholar] [CrossRef]
- Grosshans, F.; Van Assche, G.; Wenger, J.; Brouri, R.; Cerf, N.J.; Grangier, P. Quantum key distribution using gaussian-modulated coherent states. Nature 2003, 421, 238–241. [Google Scholar] [CrossRef]
- Alshaer, N.; Nasr, M.E.; Ismail, T. Hybrid MPPM-BB84 quantum key distribution over FSO channel considering atmospheric turbulence and pointing errors. IEEE Photonics J. 2021, 13, 7600109. [Google Scholar] [CrossRef]
- Ramos, M.F.; Pinto, A.N.; Silva, N.A. Polarization based discrete variables quantum key distribution via conjugated homodyne detection. Sci. Rep. 2022, 12, 6135. [Google Scholar] [CrossRef] [PubMed]
- Primaatmaja, I.W.; Liang, C.C.; Zhang, G.; Haw, J.Y.; Wang, C.; Lim, C.C.W. Discrete-variable quantum key distribution with homodyne detection. Quantum 2022, 6, 613. [Google Scholar] [CrossRef]
- Alshaer, N.; Moawad, A.; Ismail, T. Reliability and security analysis of an entanglement-based QKD protocol in a dynamic ground-to-UAV FSO communications system. IEEE Access 2021, 9, 168052–168067. [Google Scholar] [CrossRef]
- Fan-Yuan, G.J.; Lu, F.Y.; Wang, S.; Yin, Z.Q.; He, D.Y.; Chen, W.; Zhou, Z.; Wang, Z.H.; Teng, J.; Guo, G.C.; et al. Robust and adaptable quantum key distribution network without trusted nodes. Optica 2022, 9, 812–823. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Pi, Y.; Pan, Y.; Shao, Y.; Ma, L.; Zhang, Y.; Yang, J.; Zhang, T.; Huang, W.; et al. Sub-Gbps key rate four-state continuous-variable quantum key distribution within metropolitan area. Commun. Phys. 2022, 5, 162. [Google Scholar] [CrossRef]
- Alshaer, N.; Ismail, T.; Nasr, M.E. Performance evaluation and security analysis of ground-to-satellite FSO system with CV-QKD protocol. IET Commun. 2020, 14, 1534–1542. [Google Scholar] [CrossRef]
- Ruiz-Chamorro, A.; Garcia-Callejo, A.; Fernandez, V. Low-complexity continuous-variable quantum key distribution with true local oscillator using pilot-assisted frequency locking. Sci. Rep. 2024, 14, 10770. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Shen, G.; Tang, F.; Chan, C.C.K. Noise-aware resource allocation with integrated key generation and consumption for CV-QKD over WDM networks. J. Opt. Commun. Netw. 2024, 16, 29–44. [Google Scholar] [CrossRef]
- Alshaer, N.; Ismail, T. Performance evaluation and security analysis of UAV-based FSO/CV-QKD system employing DP-QPSK/CD. IEEE Photonics J. 2022, 14, 7324911. [Google Scholar] [CrossRef]
- Li, M.; Wang, T. Continuous-variable quantum key distribution over air quantum channel with phase shift. IEEE Access 2020, 8, 39672–39677. [Google Scholar] [CrossRef]
- Chai, G.; Cao, Z.; Liu, W.; Wang, S.; Huang, P.; Zeng, G. Parameter estimation of atmospheric continuous-variable quantum key distribution. Phys. Rev. A 2019, 99, 032326. [Google Scholar] [CrossRef]
- Lasota, M.; Filip, R.; Usenko, V.C. Robustness of quantum key distribution with discrete and continuous variables to channel noise. Phys. Rev. A 2017, 95, 062312. [Google Scholar] [CrossRef]
- Hosseinidehaj, N.; Babar, Z.; Malaney, R.; Ng, S.X.; Hanzo, L. Satellite-based continuous-variable quantum communications: State-of-the-art and a predictive outlook. IEEE Commun. Surv. Tutor. 2018, 21, 881–919. [Google Scholar] [CrossRef]
- Lopez-Leyva, J.A.; Talamantes-Alvarez, A.; Ponce-Camacho, M.A.; Garcia-Cardenas, E.; Alvarez-Guzman, E. Free-Space-Optical Quantum Key Distribution Systems: Challenges and Trends. In Quantum Cryptography in Advanced Networks; IntechOpen: London, UK, 2018. [Google Scholar]
- Li, Y.; Wang, Y.; Mao, Y.; Peng, W.; Jin, D.; Guo, Y. Continuous-Variable Quantum Key Distribution Based on Heralded Hybrid Linear Amplifier with a Local Local Oscillator. Entropy 2021, 23, 1395. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, H.; Shao, Y.; Pi, Y.; Li, Y.; Liu, B.; Huang, W.; Xu, B. Experimental demonstration of high-rate discrete-modulated continuous-variable quantum key distribution system. Opt. Lett. 2022, 47, 3307–3310. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.K.; Li, Q.; Hao, P.L.; Abd-El-Atty, B.; Iliyasu, A.M. High performance reconciliation for practical quantum key distribution systems. Opt. Quantum Electron. 2022, 54, 163. [Google Scholar] [CrossRef]
- Vasylyev, D.Y.; Semenov, A.; Vogel, W. Toward global quantum communication: Beam wandering preserves nonclassicality. Phys. Rev. Lett. 2012, 108, 220501. [Google Scholar] [CrossRef] [PubMed]
- Vasylyev, D.; Semenov, A.; Vogel, W. Atmospheric quantum channels with weak and strong turbulence. Phys. Rev. Lett. 2016, 117, 090501. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Peng, J.; Liu, W.; He, C.; Zhang, M. Performance improvement of self-referenced continuous-variable quantum key distribution via optical amplifiers. Laser Phys. Lett. 2021, 18, 085201. [Google Scholar] [CrossRef]
- Guo, Y.; Li, R.; Liao, Q.; Zhou, J.; Huang, D. Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier. Phys. Lett. A 2018, 382, 372–381. [Google Scholar] [CrossRef]
- Gümüş, K.; Eriksson, T.A.; Takeoka, M.; Fujiwara, M.; Sasaki, M.; Schmalen, L.; Alvarado, A. A novel error correction protocol for continuous variable quantum key distribution. Sci. Rep. 2021, 11, 10465. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.Y.; Liu, B.; Zhai, Y.P.; Wu, C.Q.; Yu, W.R. High-speed and large-scale privacy amplification scheme for quantum key distribution. Sci. Rep. 2019, 9, 15733. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Lu, Z.; Wang, X.; Li, Y. Discrete-modulation continuous-variable quantum key distribution with a high key rate. New J. Phys. 2023, 25, 023019. [Google Scholar] [CrossRef]
- Wang, H.; Pi, Y.; Huang, W.; Li, Y.; Shao, Y.; Yang, J.; Liu, J.; Zhang, C.; Zhang, Y.; Xu, B. High-speed Gaussian-modulated continuous-variable quantum key distribution with a local local oscillator based on pilot-tone-assisted phase compensation. Opt. Express 2020, 28, 32882–32893. [Google Scholar] [CrossRef]
- Vagniluca, I.; Da Lio, B.; Rusca, D.; Cozzolino, D.; Ding, Y.; Zbinden, H.; Zavatta, A.; Oxenløwe, L.K.; Bacco, D. Efficient time-bin encoding for practical high-dimensional quantum key distribution. Phys. Rev. Appl. 2020, 14, 014051. [Google Scholar] [CrossRef]
- Pathak, N.K.; Chaudhary, S.; Sangeeta; Kanseri, B. Phase encoded quantum key distribution up to 380 km in standard telecom grade fiber enabled by baseline error optimization. Sci. Rep. 2023, 13, 15868. [Google Scholar] [CrossRef] [PubMed]
- Kish, S.P.; Thapa, C.; Sayat, M.; Suzuki, H.; Pieprzyk, J.; Camtepe, S. Mitigation of channel tampering attacks in continuous-variable quantum key distribution. Phys. Rev. Res. 2024, 6, 023301. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, P.; Huang, D. One-pixel attack for continuous-variable quantum key distribution systems. Photonics 2023, 10, 129. [Google Scholar] [CrossRef]
- Wang, X.; Guo, S.; Wang, P.; Liu, W.; Li, Y. Realistic rate-distance limit of continuous-variable quantum key distribution. Opt. Express 2019, 27, 13372–13386. [Google Scholar] [CrossRef]
- Hosseinidehaj, N.; Walk, N.; Ralph, T.C. Optimal realistic attacks in continuous-variable quantum key distribution. Phys. Rev. A 2019, 99, 052336. [Google Scholar] [CrossRef]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P.; Symul, T.; Ralph, T.C.; Lam, P.K. Quantum cryptography without switching. Phys. Rev. Lett. 2004, 93, 170504. [Google Scholar] [CrossRef] [PubMed]
- Hosseinidehaj, N.; Walk, N.; Ralph, T.C. Composable finite-size effects in free-space continuous-variable quantum-key-distribution systems. Phys. Rev. A 2021, 103, 012605. [Google Scholar] [CrossRef]
- Lütkenhaus, N. Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 2000, 61, 052304. [Google Scholar] [CrossRef]
- Waks, E.; Takesue, H.; Yamamoto, Y. Security of differential-phase-shift quantum key distribution against individual attacks. Phys. Rev. A—Atomic Mol. Opt. Phys. 2006, 73, 012344. [Google Scholar] [CrossRef]
- Rastegin, A.E. Individual attacks with generalized discrimination and inadequacy of some information measures. Quantum Inf. Process. 2019, 18, 276. [Google Scholar] [CrossRef]
- Ramanathan, V.; Prabhakar, A.; Mandayam, P. Security of differential phase shift QKD against explicit individual attacks. arXiv 2023, arXiv:2305.11822. [Google Scholar]
- Huang, P.; Huang, J.; Zhang, Z.; Zeng, G. Quantum key distribution using basis encoding of Gaussian-modulated coherent states. Phys. Rev. A 2018, 97, 042311. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, J.; Shi, J.; He, G.; Guo, Y. Improving Continuous-Variable Quantum Key Distribution Using the Heralded Noiseless Linear Amplifier with Source in the Middle. Int. J. Theor. Phys. 2016, 55, 1156–1166. [Google Scholar] [CrossRef]
- Kundu, N.K.; McKay, M.R.; Mallik, R.K. Wireless quantum key distribution at terahertz frequencies: Opportunities and challenges. IET Quantum Commun. 2024. early view. [Google Scholar] [CrossRef]
- Wang, S.; Huang, P.; Wang, T.; Zeng, G. Atmospheric effects on continuous-variable quantum key distribution. New J. Phys. 2018, 20, 083037. [Google Scholar] [CrossRef]
- Ismail, T.; Leitgeb, E.; Ghassemlooy, Z.; Al-Nahhal, M. Performance improvement of FSO system using multi-pulse pulse position modulation and SIMO under atmospheric turbulence conditions and with pointing errors. IET Netw. 2018, 7, 165–172. [Google Scholar] [CrossRef]
- Ahmed, S.; Alshaer, N.; Alaghbari, K.A.; Ismail, T. Security analysis of gaussian and discrete modulations in fso/cv-qkd systems employing llo under phase and amplitude attacks. IEEE Access 2022, 10, 100041–100053. [Google Scholar] [CrossRef]
- Tang, X.; Kumar, R.; Ren, S.; Wonfor, A.; Penty, R.; White, I. Performance of continuous variable quantum key distribution system at different detector bandwidth. Opt. Commun. 2020, 471, 126034. [Google Scholar] [CrossRef]
- Laudenbach, F.; Pacher, C.; Fung, C.H.F.; Poppe, A.; Peev, M.; Schrenk, B.; Hentschel, M.; Walther, P.; Hübel, H. Continuous-variable quantum key distribution with Gaussian modulation—The theory of practical implementations. Adv. Quantum Technol. 2018, 1, 1800011. [Google Scholar] [CrossRef]
- Niset, J. Quantum Information with Optical Continuous Variables: Nonlocality, Entanglement, and Error Correction. Ph.D. Thesis, Universit’e Libre de Bruxelles, Brussels, Belgium, 2008. [Google Scholar]
- Huang, Y.; Zhang, Y.; Xu, B.; Huang, L.; Yu, S. A modified practical homodyne detector model for continuous-variable quantum key distribution: Detailed security analysis and improvement by the phase-sensitive amplifier. J. Phys. B At. Mol. Opt. Phys. 2020, 54, 015503. [Google Scholar] [CrossRef]
- Fossier, S.; Diamanti, E.; Debuisschert, T.; Tualle-Brouri, R.; Grangier, P. Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 114014. [Google Scholar] [CrossRef]
- Li, M.; Cvijetic, M. Continuous-variable quantum key distribution with self-reference detection and discrete modulation. IEEE J. Quantum Electron. 2018, 54, 8000408. [Google Scholar] [CrossRef]
- Farid, A.A.; Hranilovic, S. Outage capacity optimization for free-space optical links with pointing errors. J. Light. Technol. 2007, 25, 1702–1710. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
a | Aperture radius | 0.15 m |
beam-spot radius | 0.005 m | |
Laser wavelength | 1550 nm | |
Alice’s modulation variance | 4 | |
Excess noise | 0.005 | |
Electronic noise | 0.01 | |
Detector efficiency | 0.75 | |
g | Amplifier gain | 1, 5, and 10 |
d | Propagation distance | 0–15 km |
Refractive index structure parameter | , , and |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshaer, N.; Ismail, T.; Mahmoud, H. Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD). Sensors 2024, 24, 5201. https://doi.org/10.3390/s24165201
Alshaer N, Ismail T, Mahmoud H. Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD). Sensors. 2024; 24(16):5201. https://doi.org/10.3390/s24165201
Chicago/Turabian StyleAlshaer, Nancy, Tawfik Ismail, and Haitham Mahmoud. 2024. "Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD)" Sensors 24, no. 16: 5201. https://doi.org/10.3390/s24165201
APA StyleAlshaer, N., Ismail, T., & Mahmoud, H. (2024). Enhancing Performance of Continuous-Variable Quantum Key Distribution (CV-QKD) and Gaussian Modulation of Coherent States (GMCS) in Free-Space Channels under Individual Attacks with Phase-Sensitive Amplifier (PSA) and Homodyne Detection (HD). Sensors, 24(16), 5201. https://doi.org/10.3390/s24165201