Anti-Jamming Resource-Allocation Method in the EH-CIoT Network through LWDDPG Algorithm
Abstract
:1. Introduction
2. Related Works
3. Contribution and Organization
- This paper considers the EH-CIoT multi-user transmission network under jamming attacks, and deploys Agent Base Station (ABS) to reasonably allocate resources for multiple SUs to maximize the LTT of the network.
- This paper models the proposed problem as a Markov Decision Process (MDP) without prior knowledge, and proposes a Linearly Weighted Deep Deterministic Policy Gradient (LWDDPG) algorithm that enables the ABS to effectively learn resource-allocation strategies in the process of interacting with the dynamic environment. The proposed method enables the ABS to reasonably allocate transmission channels, continuous power, and work modes to the SUs.
- This paper carefully designs the reward function. Specifically, this paper proposes to take the throughput and RF energy harvested by the SUs as the two-dimensional rewards, which can enable the ABS to evaluate its actions more effectively and guide the ABS to make strategies that are beneficial for maximizing the LTT of the EH-CIoT network.
4. System Model
4.1. Channel Gain
4.2. Two Mode Selections for EH-CIoT Nodes
4.3. Energy Harvesting and Renewal
5. Jamming Attack Models
6. Problem Formulation
7. DRL-Based Transmission-Optimization Algorithm
7.1. Framework of RL-Based EH-CIoT Network
7.2. Linearly Weighted Deep Deterministic Policy Gradient-Based Power-Allocation Algorithm
Algorithm 1 LWDDPG Resource-Allocation Algorithm for the Interweave EH-CIoT Network Under Jamming Attacks. |
|
8. Simulation Results
8.1. Simulation Settings
8.2. Statistical Results and Analysis
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osama, M.; Ateya, A.A.; Sayed, M.S.; Hammad, M.; Pławiak, P.; Abd El-Latif, A.A.; Elsayed, R.A. Internet of Medical Things and Healthcare 4.0: Trends, Requirements, Challenges, and Research Directions. Sensors 2023, 23, 7435. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Patel, F.; Alabdulatif, A.; Gupta, R.; Tanwar, S.; Kumar, N.; Sharma, R. A Deep-Q Learning Scheme for Secure Spectrum Allocation and Resource Management in 6G Environment. IEEE Trans. Netw. Serv. Manag. 2022, 19, 4989–5005. [Google Scholar] [CrossRef]
- Lin, R.; Li, F.; Wang, J.; Hu, J.; Zhang, Z.; Wu, L. A Blockchain-Based Method to Defend against Massive SSDF Attacks in Cognitive Internet of Vehicles. IEEE Trans. Veh. Technol. 2024, 73, 6954–6967. [Google Scholar] [CrossRef]
- Khan, A.U.; Abbas, G.; Abbas, Z.H.; Bilal, M.; Shah, S.C.; Song, H. Reliability Analysis of Cognitive Radio Networks with Reserved Spectrum for 6G-IoT. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2726–2737. [Google Scholar] [CrossRef]
- Ma, D.; Lan, G.; Hassan, M.; Hu, W.; Das, S.K. Sensing, Computing, and Communications for Energy Harvesting IoTs: A Survey. IEEE Commun. Surv. Tutor. 2020, 22, 1222–1250. [Google Scholar] [CrossRef]
- Shi, Z.; Xie, X.; Lu, H.; Yang, H.; Cai, J.; Ding, Z. Deep Reinforcement Learning-Based Multidimensional Resource Management for Energy Harvesting Cognitive NOMA Communications. IEEE Trans. Commun. 2022, 70, 3110–3125. [Google Scholar] [CrossRef]
- Liu, X.; Xu, B.; Wang, X.; Zheng, K.; Chi, K.; Tian, X. Impacts of Sensing Energy and Data Availability on Throughput of Energy Harvesting Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2023, 72, 747–759. [Google Scholar] [CrossRef]
- Li, F.; Lin, R.; Wang, J.; Hu, J.; Shu, F.; Wu, L. A Fast Method to Defend against SSDF Attacks in the CIoV Network: Based on DAG Blockchain and Evolutionary Game. IEEE Commun. Lett. 2023, 27, 3171–3175. [Google Scholar] [CrossRef]
- Alibeigi, M.; Taherpour, A.; Gazor, S. Improving Secrecy Rate and Social Welfare by NOMA Technique in D2D Communications Network. IEEE Trans. Green Commun. Netw. 2022, 6, 907–916. [Google Scholar] [CrossRef]
- Pirayesh, H.; Zeng, H. Jamming Attacks and Anti-Jamming Strategies in Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2022, 24, 767–809. [Google Scholar] [CrossRef]
- Ji, Z.; Yang, W.; Guan, X.; Zhao, X.; Li, G.; Wu, Q. Trajectory and Transmit Power Optimization for IRS-Assisted UAV Communication under Malicious Jamming. IEEE Trans. Veh. Technol. 2022, 71, 11262–11266. [Google Scholar] [CrossRef]
- Alzahrani, B.; Ejaz, W. Resource Management for Cognitive IoT Systems with RF Energy Harvesting in Smart Cities. IEEE Access 2018, 6, 62717–62727. [Google Scholar] [CrossRef]
- Gurjar, D.S.; Nguyen, H.H.; Tuan, H.D. Wireless Information and Power Transfer for IoT Applications in Overlay Cognitive Radio Networks. IEEE Internet Things J. 2019, 6, 3257–3270. [Google Scholar] [CrossRef]
- Shahini, A.; Kiani, A.; Ansari, N. Energy Efficient Resource Allocation in EH-Enabled CR Networks for IoT. IEEE Internet Things J. 2019, 6, 3186–3193. [Google Scholar] [CrossRef]
- Mishra, N.; Kundu, S.; Mondal, S.; Roy, S.D. Cognitive Machine to Machine Communication with Energy Harvesting in IoT Networks. In Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; pp. 672–677. [Google Scholar]
- Bany Salameh, H.A.; Almajali, S.; Ayyash, M.; Elgala, H. Spectrum Assignment in Cognitive Radio Networks for Internet-of-Things Delay-Sensitive Applications Under Jamming Attacks. IEEE Internet Things J. 2018, 5, 1904–1913. [Google Scholar] [CrossRef]
- Chaczko, Z.; Slehar, S.; Shnoudi, T. Game-Theory Based Cognitive Radio Policies for Jamming and Anti-Jamming in the IoT. In Proceedings of the 2018 12th International Symposium on Medical Information and Communication Technology (ISMICT), Sydney, Australia, 26–28 March 2018; pp. 1–6. [Google Scholar]
- Khadr, M.H.; Bany Salameh, H.; Ayyash, M.; Almajali, S.; Elgala, H. Testbed Validation of Security-Aware Channel Assignment in Cognitive Radio IoT Networks. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–6. [Google Scholar]
- Salameh, H.B.; Al-Quraan, M. Securing Delay-Sensitive CR-IoT Networking Under Jamming Attacks: Parallel Transmission and Batching Perspective. IEEE Internet Things J. 2020, 7, 7529–7538. [Google Scholar] [CrossRef]
- Gwon, Y.; Dastangoo, S.; Fossa, C.; Kung, H.T. Competing Mobile Network Game: Embracing Antijamming and Jamming Strategies with Reinforcement Learning. In Proceedings of the 2013 IEEE Conference on Communications and Network Security (CNS), National Harbor, MD, USA, 14–16 October 2013; pp. 28–36. [Google Scholar]
- Zhao, G.; Li, Y.; Xu, C.; Han, Z.; Xing, Y.; Yu, S. Joint Power Control and Channel Allocation for Interference Mitigation Based on Reinforcement Learning. IEEE Access 2019, 7, 177254–177265. [Google Scholar] [CrossRef]
- Xiao, L.; Jiang, D.; Xu, D.; Zhu, H.; Zhang, Y.; Poor, H.V. Two-Dimensional Antijamming Mobile Communication Based on Reinforcement Learning. IEEE Trans. Veh. Technol. 2018, 67, 9499–9512. [Google Scholar] [CrossRef]
- Bi, Y.; Wu, Y.; Hua, C. Deep Reinforcement Learning Based Multi-User Anti-Jamming Strategy. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Chu, M.; Liao, X.; Li, H.; Cui, S. Power Control in Energy Harvesting Multiple Access System with Reinforcement Learning. IEEE Internet Things J. 2019, 6, 9175–9186. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, W.-D.; Chen, C.; Alphones, A.; Xie, X. Deep-Reinforcement-Learning-Based Energy-Efficient Resource Management for Social and Cognitive Internet of Things. IEEE Internet Things J. 2020, 7, 5677–5689. [Google Scholar] [CrossRef]
- Ding, Z.; Schober, R.; Poor, H.V. No-Pain No-Gain: DRL Assisted Optimization in Energy-Constrained CR-NOMA Networks. IEEE Trans. Commun. 2021, 69, 5917–5932. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, X. Deep Reinforcement Learning Optimal Transmission Algorithm for Cognitive Internet of Things with RF Energy Harvesting. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1216–1227. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, K.; Chi, K.; Zhu, Y.-H. Cooperative Spectrum Sensing Optimization in Energy-Harvesting Cognitive Radio Networks. IEEE Trans. Wirel. Commun. 2020, 19, 7663–7676. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, X.; Zhu, Y.; Chi, K.; Liu, K. Total Throughput Maximization of Cooperative Cognitive Radio Networks with Energy Harvesting. IEEE Trans. Wirel. Commun. 2020, 19, 533–546. [Google Scholar] [CrossRef]
- Zheng, K.; Jia, X.; Chi, K.; Liu, X. DDPG-Based Joint Time and Energy Management in Ambient Backscatter-Assisted Hybrid Underlay CRNs. IEEE Trans. Commun. 2023, 71, 441–456. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Y.; Xu, Y.; Li, G.; Zhang, X.; Ma, W.; Chen, T. Fight Against Intelligent Reactive Jammer in MEC Networks: A Hierarchical Reinforcement Learning-Based Hybrid Hidden Strategy. IEEE Wirel. Commun. Lett. 2024, 13, 1078–1082. [Google Scholar] [CrossRef]
- Qi, N.; Wang, W.; Zhou, F.; Jia, L.; Wu, Q.; Jin, S.; Xiao, M. Two Birds with One Stone: Simultaneous Jamming and Eavesdropping with the Bayesian–Stackelberg Game. IEEE Trans. Commun. 2021, 69, 8013–8027. [Google Scholar] [CrossRef]
- De Sena, A.S.; Kibiłda, J.; Mahmood, N.H.; Gomes, A.; Latva-Aho, M. Malicious RIS Versus Massive MIMO: Securing Multiple Access against RIS-Based Jamming Attacks. IEEE Wirel. Commun. Lett. 2024, 13, 989–993. [Google Scholar] [CrossRef]
- Pratibha; Li, K.H.; Teh, K.C. Optimal Spectrum Access and Energy Supply for Cognitive Radio Systems with Opportunistic RF Energy Harvesting. IEEE Trans. Veh. Technol. 2017, 66, 7114–7122. [Google Scholar] [CrossRef]
- Peng, H.; Shen, X. Multi-Agent Reinforcement Learning Based Resource Management in MEC- and UAV-Assisted Vehicular Networks. IEEE J. Select. Areas Commun. 2021, 39, 131–141. [Google Scholar] [CrossRef]
- Halloush, R.; Salameh, H.B.; Musa, A.; Halloush, M.; Shunnar, M.A. Highly Reliable Transmission and Channel Assignment for CR-IoT Networks. IEEE Internet Things J. 2022, 9, 3945–3953. [Google Scholar] [CrossRef]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks with RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2015, 17, 757–789. [Google Scholar] [CrossRef]
- Hanawal, M.K.; Abdel-Rahman, M.J.; Krunz, M. Joint Adaptation of Frequency Hopping and Transmission Rate for Anti-Jamming Wireless Systems. IEEE Trans. Mob. Comput. 2016, 15, 2247–2259. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; De Cola, T.; Wang, J.-B.; Zhu, W.-P.; Cheng, J. Supporting IoT with Rate-Splitting Multiple Access in Satellite and Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Cohen, R.; Katzir, L.; Raz, D. An Efficient Approximation for the Generalized Assignment Problem. Inf. Process. Lett. 2006, 100, 162–166. [Google Scholar] [CrossRef]
- Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal Process. Mag. 2017, 34, 26–38. [Google Scholar] [CrossRef]
- Yu, Y.; Tang, J.; Huang, J.; Zhang, X.; So, D.K.C.; Wong, K.-K. Multi-Objective Optimization for UAV-Assisted Wireless Powered IoT Networks Based on Extended DDPG Algorithm. IEEE Trans. Commun. 2021, 69, 6361–6374. [Google Scholar] [CrossRef]
- Albinsaid, H.; Singh, K.; Biswas, S.; Li, C.-P. Multi-Agent Reinforcement Learning-Based Distributed Dynamic Spectrum Access. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1174–1185. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, J.; Wang, X.; Hanzo, L. A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends. Proc. IEEE 2016, 104, 1727–1765. [Google Scholar] [CrossRef]
- Wongsuphasawat, K.; Smilkov, D.; Wexler, J.; Wilson, J.; Mane, D.; Fritz, D.; Krishnan, D.; Viegas, F.B.; Wattenberg, M. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow. IEEE Trans. Visual. Comput. Graph. 2018, 24, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Qiu, H.; Wang, J.; Zhang, Z.; Wu, L.; Shu, F. Physical-Layer Security Enhancement in Energy-Harvesting-Based Cognitive Internet of Things: A GAN-Powered Deep Reinforcement Learning Approach. IEEE Internet Things J. 2024, 11, 4899–4913. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Number of EH-C nodes N | 10 |
Number of primary channels K | 10 |
Number of primary users M | 3 |
Length of each timeslot T | 1 s |
Control phase duration | 0.2 s |
Path loss exponent | 3.17 |
Reference distance | 3.3 m |
Transmission power of primary user | 0.2 W |
Maximum transmission power of EH-C nodes | 0.1 W |
Energy consumed by the handshake | 0.01 J |
Noise power n | 1 × W |
Maximum battery capacity | 1 J |
Energy-conversion rate | |
Discount rate | |
SINR threshold | 5 dB |
Capacity C of experience buffer D | 10,000 |
Minibatch size | 256 |
Antenna length | m |
Carrier frequency | 900 MHz |
Number of channels jammed by scanning attacks | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Bao, J.; Wang, J.; Liu, D.; Chen, W.; Lin, R. Anti-Jamming Resource-Allocation Method in the EH-CIoT Network through LWDDPG Algorithm. Sensors 2024, 24, 5273. https://doi.org/10.3390/s24165273
Li F, Bao J, Wang J, Liu D, Chen W, Lin R. Anti-Jamming Resource-Allocation Method in the EH-CIoT Network through LWDDPG Algorithm. Sensors. 2024; 24(16):5273. https://doi.org/10.3390/s24165273
Chicago/Turabian StyleLi, Fushuai, Jiawang Bao, Jun Wang, Da Liu, Wencheng Chen, and Ruiquan Lin. 2024. "Anti-Jamming Resource-Allocation Method in the EH-CIoT Network through LWDDPG Algorithm" Sensors 24, no. 16: 5273. https://doi.org/10.3390/s24165273
APA StyleLi, F., Bao, J., Wang, J., Liu, D., Chen, W., & Lin, R. (2024). Anti-Jamming Resource-Allocation Method in the EH-CIoT Network through LWDDPG Algorithm. Sensors, 24(16), 5273. https://doi.org/10.3390/s24165273