User-Centered Evaluation of the Wearable Walker Lower Limb Exoskeleton; Preliminary Assessment Based on the Experience Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Wearable Walker Exoskeleton
2.2. Control Strategy
2.2.1. Gait Segmentation
2.2.2. Blend Control
2.3. Experimental Protocol
2.3.1. The EXPERIENCE Sub-Project
- Module 1: Based on the newly developed multi-factor questionnaire;
- Module 2: Algorithms to extract psychophysiological indicators starting from the physiological measures gathered as described in the following paragraph.
2.3.2. Physiological Measures
2.3.3. Participants
2.3.4. Protocol
- Place the two physiological sensors onto the subject’s body:
- (a)
- ZephyrBioModule 3 sensor, connected to a Zephyr™ band featuring ECG and breathing sensors, aligning conductive ECG sensors with the center of the chest and the breathing sensor with the left side of the thorax, slightly moistening the pad surfaces with water to promote conductivity;
- (b)
- Shimmer GSR sensor (Dublin, Ireland), attached to the patient’s wrist using the adjustable strap. The electrodes must be placed on the back of the index and middle finger of the non-dominant hand.
- Start data collection software and start recording of physiological data.
- Ask the subject to sit with eyes closed and let her/him relax.
- Mark the beginning of the recording of the seated baseline on the data collection software and mark the stop when finished. Time duration of recording is 4 min and has to be measured by a chronometer.
- Place the exoskeleton onto the subject’s body and let it relax.
- Flag the start of the recording of the standing baseline on the data collection software and flag the stop when finished.
- Start the robot-assisted walking session and wait until a steady-state condition is reached. The steady-state condition is reached when assistance parameters are not changed anymore and the subject is walking comfortably without any major change.
- Flag the start of the recording of the walking condition on the data collection software and flag the stop when finished. Time duration of recording is 16 min and has to be measured by a chronometer.
- Stop the walking session and stop data collection software.
- Remove physiological sensors and the exoskeleton.
- Start the questionnaire compilation (see Section 2.4).
2.4. Questionnaire
Questionnaire PIs
- Usability, which is defined as how effectively, efficiently, and satisfactorily users can use the exoskeleton to achieve specific goals.
- Acceptability, which refers to the users’ perception of the exoskeleton and their willingness to incorporate it into daily life.
- Perceptibility, which measures the emotional and perceptual impact of using the exoskeleton and its effect on quality of life. A high value indicates a positive influence.
- Functionality, which assesses how the user perceives the exoskeleton in terms of ease of learning, flexibility of interaction, reliability, and workload.
2.5. Psychophysiological PIs
- Stress is characterized as a condition of mental or emotional tension brought on by unfavorable events. A high PI score suggests that using a robot can be stressful.
- Energy means the quantity of energy required to perform bodily tasks. A high PI number suggests that using a robot involves a lot of work.
- Attention describes the level of conscious and ongoing user involvement in the work. A high value for this PI suggests that using a robot demands careful attention.
- Fatigue is distress typically caused by the muscles in the body becoming too tired to do a task. A high PI score suggests that the robot use induces fatigue.
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moyon, A.; Poirson, E.; Petiot, J.F. Development of an acceptance model for occupational exoskeletons and application for a passive upper limb device. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 291–301. [Google Scholar] [CrossRef]
- Schwerha, D.J.; McNamara, N.; Nussbaum, M.A.; Kim, S. Adoption potential of occupational exoskeletons in diverse enterprises engaged in manufacturing tasks. Int. J. Ind. Ergon. 2021, 82, 103103. [Google Scholar] [CrossRef]
- Mahmud, D.; Bennett, S.T.; Zhu, Z.; Adamczyk, P.G.; Wehner, M.; Veeramani, D.; Dai, F. Identifying facilitators, barriers, and potential solutions of adopting exoskeletons and exosuits in construction workplaces. Sensors 2022, 22, 9987. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, N.; Akanmu, A.; Shojaei, A.; Agee, P. Factors influencing the adoption of passive exoskeletons in the construction industry: Industry perspectives. Int. J. Ind. Ergon. 2024, 100, 103549. [Google Scholar] [CrossRef]
- De Bock, S.; Ghillebert, J.; Govaerts, R.; Tassignon, B.; Rodriguez-Guerrero, C.; Crea, S.; Veneman, J.; Geeroms, J.; Meeusen, R.; De Pauw, K. Benchmarking occupational exoskeletons: An evidence mapping systematic review. Appl. Ergon. 2022, 98, 103582. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Fernandez, D.; Torricelli, D.; del Carmen Sanchez-Villamanan, M.; Aller, F.; Mombaur, K.; Conti, R.; Vitiello, N.; Moreno, J.C.; Pons, J.L. Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1573–1583. [Google Scholar] [CrossRef] [PubMed]
- Torricelli, D.; Pons, J.L. Eurobench: Preparing robots for the real world. In Proceedings of the Wearable Robotics: Challenges and Trends: Proceedings of the 4th International Symposium on Wearable Robotics, WeRob2018, Pisa, Italy, 16–20 October 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 375–378. [Google Scholar]
- Lippi, V.; Filippeschi, A.; Camardella, C.; Porcini, F.; Maurer, C.; Lencioni, L. EXOSMOOTH: Test of Innovative EXOskeleton Control for SMOOTH Assistance, With and Without Ankle Actuation. In Proceedings of the 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Sapporo, Japan, 7–10 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 890–894. [Google Scholar]
- Lippi, V.; Camardella, C.; Filippeschi, A.; Porcini, F. Identification of Gait Phases with Neural Networks for Smooth Transparent Control of a Lower Limb Exoskeleton. In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics ICINCO, Paris, France, 6–8 July 2021; SciTePress: Setúbal, Portugal, 2021; pp. 171–178. [Google Scholar] [CrossRef]
- Camardella, C.; Porcini, F.; Filippeschi, A.; Marcheschi, S.; Solazzi, M.; Frisoli, A. Gait phases blended control for enhancing transparency on lower-limb exoskeletons. IEEE Robot. Autom. Lett. 2021, 6, 5453–5460. [Google Scholar] [CrossRef]
- Rodrigues-Carvalho, C.; Fernández-García, M.; Pinto-Fernández, D.; Sanz-Morere, C.; Barroso, F.O.; Borromeo, S.; Rodríguez-Sánchez, C.; Moreno, J.C.; Del-Ama, A.J. Benchmarking the effects on human–exoskeleton interaction of trajectory, admittance and EMG-triggered exoskeleton movement control. Sensors 2023, 23, 791. [Google Scholar] [CrossRef] [PubMed]
- Pisotta, I.; Tagliamonte, N.; Bigioni, A.; Tamburella, F.; Lorusso, M.; Bentivoglio, F.; Pecoraro, I.; Argentieri, P.; Marri, F.; Zollo, L.; et al. Pilot testing of a new questionnaire for the assessment of user experience during exoskeleton-assisted walking. In Proceedings of the 5th International Conference on Neurorehabilitation (ICNR2020), Online, 13–16 October 2020; Springer: Berlin/Heidelberg, Germany, 2022; pp. 195–199. [Google Scholar]
- Pecoraro, I.; Tagliamonte, N.L.; Tamantini, C.; Cordella, F.; Bentivoglio, F.; Pisotta, I.; Bigioni, A.; Tamburella, F.; Lorusso, M.; Argentieri, P.; et al. Psychophysiological Assessment of Exoskeleton-Assisted Treadmill Walking. In Converging Clinical and Engineering Research on Neurorehabilitation IV; Torricelli, D., Akay, M., Pons, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 201–205. [Google Scholar]
- Smolander, J.; Ajoviita, M.; Juuti, T.; Nummela, A.; Rusko, H. Estimating oxygen consumption from heart rate and heart rate variability without individual calibration. Clin. Physiol. Funct. Imaging 2011, 31, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Evan’s, O.; Zgrntn, Y.; Faria, M.; Monod, H. Physiological responses to load holding and load carriage. Ergonomics 1983, 26, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Holewijn, M. Physiological strain due to load carrying. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 61, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Spurr, G.; Sepic, S.; Gardner, G.; Mollinger, L. Treadmill vs. floor walking: Kinematics, electromyogram, and heart rate. J. Appl. Physiol. 1985, 59, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Marchand, C.; De Graaf, J.B.; Jarrassé, N. Measuring mental workload in assistive wearable devices: A review. J. Neuroeng. Rehabil. 2021, 18, 160. [Google Scholar] [CrossRef] [PubMed]
- Lippi, V.; Mergner, T. A challenge: Support of standing balance in assistive robotic devices. Appl. Sci. 2020, 10, 5240. [Google Scholar] [CrossRef]
- Peterka, R. Sensorimotor integration in human postural control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed]
- Mergner, T. A neurological view on reactive human stance control. Annu. Rev. Control 2010, 34, 77–198. [Google Scholar] [CrossRef]
- Lippi, V.; Mergner, T. Human-derived disturbance estimation and compensation (dec) method lends itself to a modular sensorimotor control in a humanoid robot. Front. Neurorobot. 2017, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Lippi, V.; Mergner, T.; Szumowski, M.; Zurawska, M.S.; Zielińska, T. Human-Inspired Humanoid Balancing and Posture Control in Frontal Plane. In ROMANSY, 21-Robot Design, Dynamics and Control, Proceedings of the 21st CISM-IFToMM Symposium, Udine, Italy, 20–23 June 2016; Springer: Berlin/Heidelberg, Germany, 2016; Volume 569, pp. 285–292. [Google Scholar]
- Lhoste, C.; Küçüktabak, E.B.; Vianello, L.; Amato, L.; Short, M.R.; Lynch, K.; Pons, J.L. Deep-Learning Estimation of Weight Distribution Using Joint Kinematics for Lower-Limb Exoskeleton Control. arXiv 2024, arXiv:2402.04180. [Google Scholar] [CrossRef]
- Hua, Y.; Fan, J.; Liu, G.; Zhang, X.; Lai, M.; Li, M.; Zheng, T.; Zhang, G.; Zhao, J.; Zhu, Y. A Novel Weight-Bearing Lower Limb Exoskeleton Based on Motion Intention Prediction and Locomotion State Identification. IEEE Access 2019, 7, 37620–37638. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.; Wang, Z.; Tian, Y.; Wang, S.; Xiao, Y.; Yang, F.; Wu, X. Continuous Locomotion Mode and Task Identification for an Assistive Exoskeleton Based on Neuromuscular–Mechanical Fusion. Bioengineering 2024, 11, 150. [Google Scholar] [CrossRef] [PubMed]
Link | Back | Thigh | Shank | Foot |
---|---|---|---|---|
Length [m] | 0.474 | 0.407 | 0.402 | 0.095 |
Mass [m] | 1.2–8 | 4.1 | 2.9 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camardella, C.; Lippi, V.; Porcini, F.; Bassani, G.; Lencioni, L.; Mauer, C.; Haverkamp, C.; Avizzano, C.A.; Frisoli, A.; Filippeschi, A. User-Centered Evaluation of the Wearable Walker Lower Limb Exoskeleton; Preliminary Assessment Based on the Experience Protocol. Sensors 2024, 24, 5358. https://doi.org/10.3390/s24165358
Camardella C, Lippi V, Porcini F, Bassani G, Lencioni L, Mauer C, Haverkamp C, Avizzano CA, Frisoli A, Filippeschi A. User-Centered Evaluation of the Wearable Walker Lower Limb Exoskeleton; Preliminary Assessment Based on the Experience Protocol. Sensors. 2024; 24(16):5358. https://doi.org/10.3390/s24165358
Chicago/Turabian StyleCamardella, Cristian, Vittorio Lippi, Francesco Porcini, Giulia Bassani, Lucia Lencioni, Christoph Mauer, Christian Haverkamp, Carlo Alberto Avizzano, Antonio Frisoli, and Alessandro Filippeschi. 2024. "User-Centered Evaluation of the Wearable Walker Lower Limb Exoskeleton; Preliminary Assessment Based on the Experience Protocol" Sensors 24, no. 16: 5358. https://doi.org/10.3390/s24165358
APA StyleCamardella, C., Lippi, V., Porcini, F., Bassani, G., Lencioni, L., Mauer, C., Haverkamp, C., Avizzano, C. A., Frisoli, A., & Filippeschi, A. (2024). User-Centered Evaluation of the Wearable Walker Lower Limb Exoskeleton; Preliminary Assessment Based on the Experience Protocol. Sensors, 24(16), 5358. https://doi.org/10.3390/s24165358