Gait and Balance Assessments with Augmented Reality Glasses in People with Parkinson’s Disease: Concurrent Validity and Test–Retest Reliability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Set-Up and Procedures
2.3. Data Acquisition
2.4. Data (Pre)Processing
2.4.1. Deriving (Sub-)Durations of the FTSTS Test
2.4.2. Deriving (Sub-)Durations of the TUG Test
3. Results
3.1. Concurrent Validity
3.1.1. Agreement in Time Series between AR and Reference Systems
3.1.2. Agreement in (Sub-)Durations Derived from AR and Reference System Data
3.2. Test–Retest Reliability for (Sub-)Durations of FTSTS and TUG
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baer, G.D.; Ashburn, A.M. Trunk movements in older subjects during sit-to-stand. Arch. Phys. Med. Rehabilit. 1995, 76, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Whitney, S.L.; Wrisley, D.M.; Marchetti, G.F.; Gee, M.A.; Redfern, M.S.; Furman, J.M. Clinical measurement of sit-to-stand performance in people with balance disorders: Validity of data for the Five-Times-Sit-to-Stand Test. Phys. Ther. 2005, 85, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Lord, S.R.; Murray, S.M.; Chapman, K.; Munro, B.; Tiedemann, A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J. Gerontol. Ser. A 2002, 57, M539–M543. [Google Scholar] [CrossRef]
- Schoene, D.; Wu, S.S.-M.; Mikolaizak, A.S.; Menant, J.C.; Smith, S.T.; Delbaere, K.; Lord, S.R. Discriminative ability and predictive validity of the timed up and go test in identifying older people who fall: Systematic review and meta-analysis. J. Am. Geriatr. Soc. 2013, 61, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Böttinger, M.J.; Labudek, S.; Schoene, D.; Jansen, C.-P.; Stefanakis, M.-E.; Litz, E.; Bauer, J.M.; Becker, C.; Gordt-Oesterwind, K. “TiC-TUG”: Technology in clinical practice using the instrumented timed up and go test—A scoping review. Aging Clin. Exp. Res. 2024, 36, 100. [Google Scholar] [CrossRef]
- Ejupi, A.; Brodie, M.; Gschwind, Y.J.; Lord, S.R.; Zagler, W.L.; Delbaere, K. Kinect-Based Five-Times-Sit-to-Stand Test for Clinical and In-Home Assessment of Fall Risk in Older People. Gerontology 2015, 62, 118–124. [Google Scholar] [CrossRef]
- Theodorou, C.; Velisavljevic, V.; Dyo, V.; Nonyelu, F. Visual SLAM algorithms and their application for AR, mapping, localization and wayfinding. Array 2022, 15, 100222. [Google Scholar] [CrossRef]
- Sun, R.; Aldunate, R.G.; Sosnoff, J.J. The Validity of a Mixed Reality-Based Automated Functional Mobility Assessment. Sensors 2019, 19, 2183. [Google Scholar] [CrossRef]
- Miller Koop, M.; Rosenfeldt, A.B.; Owen, K.; Penko, A.L.; Streicher, M.C.; Albright, A.; Alberts, J.L. The Microsoft HoloLens 2 Provides Accurate Measures of Gait, Turning, and Functional Mobility in Healthy Adults. Sensors 2022, 22, 2009. [Google Scholar] [CrossRef]
- Nieuwboer, A.; Rochester, L.; Herman, T.; Vandenberghe, W.; Emil, G.E.; Thomaes, T.; Giladi, N. Reliability of the new freezing of gait questionnaire: Agreement between patients with Parkinson’s disease and their carers. Gait Posture 2009, 30, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Geerse, D.J.; Coolen, B.H.; Roerdink, M. Kinematic Validation of a Multi-Kinect v2 Instrumented 10-Meter Walkway for Quantitative Gait Assessments. PLoS ONE 2015, 10, e0139913. [Google Scholar] [CrossRef]
- Geerse, D.J.; Coolen, B.; Roerdink, M. Quantifying Spatiotemporal Gait Parameters with HoloLens in Healthy Adults and People with Parkinson’s Disease: Test-Retest Reliability, Concurrent Validity, and Face Validity. Sensors 2020, 20, 3216. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; An, Q.; Yozu, A.; Chiba, R.; Takakusaki, K.; Yamakawa, H.; Tamura, Y.; Yamashita, A.; Asama, H. Visual and Vestibular Inputs Affect Muscle Synergies Responsible for Body Extension and Stabilization in Sit-to-Stand Motion. Front. Neurosci. 2018, 12, 1042. [Google Scholar] [CrossRef]
- McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Miller Koop, M.; Rosenfeldt, A.B.; Owen, K.; Zimmerman, E.; Johnston, J.; Streicher, M.C.; Albright, A.; Penko, A.L.; Alberts, J.L. The Microsoft HoloLens 2 Provides Accurate Biomechanical Measures of Performance During Military-Relevant Activities in Healthy Adults. Mil. Med. 2023, 188, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Fricke, M.; Bock, O. Eye-Head-Trunk Coordination While Walking and Turning in a Simulated Grocery Shopping Task. J. Mot. Behav. 2021, 53, 575–582. [Google Scholar] [CrossRef]
- Lim, L.I.; van Wegen, E.E.; de Goede, C.J.; Jones, D.; Rochester, L.; Hetherington, V.; Nieuwboer, A.; Willems, A.M.; Kwakkel, G. Measuring gait and gait-related activities in Parkinson’s patients own home environment: A reliability, responsiveness and feasibility study. Park. Relat. Disord. 2005, 11, 19–24. [Google Scholar] [CrossRef]
- Paul, S.S.; Canning, C.G.; Sherrington, C.; Fung, V.S. Reproducibility of measures of leg muscle power, leg muscle strength, postural sway and mobility in people with Parkinson’s disease. Gait Posture 2012, 36, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, G.; Faria, C.D.C.M.; da Silva, B.A.; Ovando, A.C.; Gomes-Osman, J.; Swarowsky, A. Are functional mobility tests responsive to group physical therapy intervention in individuals with Parkinson’s disease? NeuroRehabilitation 2018, 42, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Hardeman, L.E.S.; Geerse, D.J.; Hoogendoorn, E.M.; Nonnekes, J.; Roerdink, M. Remotely prescribed and monitored home-based gait-and-balance therapeutic exergaming using augmented reality (AR) glasses: Protocol for a clinical feasibility study in people with Parkinson’s disease. Pilot Feasibility Stud. 2024, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-Y.; Singer, J.; Keysor, J.J. The evolution of augmented reality to augment physical therapy: A scoping review. J. Rehabil. Assist. Technol. Eng. 2024, 11, 20556683241252092. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Data (Mean ± SD [Range] Unless Indicated Otherwise) |
---|---|
Age (years) | 66.3 ± 8.8 [51–82] |
Weight (kg) | 79.1 ± 9.9 [59.0–92.9] |
Height (cm) | 176.1 ± 10.3 [154–191] |
Sex, male/female | 16/6 |
Diagnostic time (years) | 7.5 ± 4.8 [1–20] |
Modified Hoehn and Yahr stage, 2/2.5 | 14/8 |
Freezing of gait, yes/no * | 11/11 |
MDS-UPDRS III score | 31.7 ± 11.3 [13–61] |
Fall history (number of falls over the previous year) | 2.5 ± 3.3 [0–10] |
Mean ± SD | Mean ± SD | Bias (95% Limits of Agreement) | t-Statistics | ICC(A,1) | ||
---|---|---|---|---|---|---|
AR | Stopwatch | |||||
FTSTS | Completion duration | 12.3 ± 3.7 | 12.1 ± 3.7 | −0.25 (−0.66 0.17) | t(20) = −5.28, p < 0.001 | 0.996 |
TUG | Completion duration | 10.3 ± 3.1 | 9.9 ± 3.2 | −0.44 (−1.19 0.31) | t(21) = −5.37, p < 0.001 | 0.984 |
AR | Kinect Head | |||||
FTSTS * | Completion duration | 11.9 ± 3.91 | 11.91 ± 3.81 | −0.04 (−0.38 0.3) | t(17) = −1.09, p = 0.293 | 0.999 |
Sitting sub-duration | 0.69 ± 0.49 | 0.62 ± 0.46 | −0.07 (−0.25 0.11) | t(16) = −3.13, p = 0.006 | 0.971 | |
Sit to stand sub-duration | 0.58 ± 0.16 | 0.62 ± 0.16 | 0.04 (−0.03 0.12) | t(16) = −4.49, p < 0.001 | 0.943 | |
Standing sub-duration | 0.34 ± 0.15 | 0.32 ± 0.16 | −0.02 (−0.09 0.06) | t(16) = 1.82, p = 0.087 | 0.965 | |
Stand to sit sub-duration | 0.61 ± 0.16 | 0.65 ± 0.16 | 0.04 (−0.07 0.14) | t(16) = −3.05, p = 0.008 | 0.921 | |
AR | IMU Trunk | |||||
TUG | Turn 1 sub-duration | 1.75 ± 0.64 | 1.8 ± 0.70 | −0.09 (−0.4 0.6) | t(20) = −1.51, p = 0.146 | 0.913 |
Turn 2 sub-duration | 2.01 ± 0.71 | 1.61 ± 0.62 | −0.40 (−1.44 0.64) | t(20) = 3.44, p = 0.003 | 0.589 |
Mean ± SD | Mean ± SD | Bias (95% Limits of Agreement) | t-Statistics | ICC(A,1) | ||
---|---|---|---|---|---|---|
AR Trial 1 | AR Trial 2 | |||||
FTSTS | Completion duration | 12.82 ± 4.33 | 12.28 ± 3.83 | −0.54 (−3.78 2.70) | t(19) = 1.45, p = 0.163 | 0.914 |
Sitting sub-duration | 0.78 ± 0.45 | 0.75 ± 0.48 | −0.03 (−0.28 0.22) | t(19) = 1.04, p = 0.314 | 0.964 | |
Sit to stand sub-duration | 0.61 ± 0.19 | 0.59 ± 0.15 | −0.02 (−0.21 0.17) | t(19) = 1.02, p = 0.322 | 0.830 | |
Standing sub-duration | 0.37 ± 0.15 | 0.38 ± 0.18 | 0.01 (−0.25 0.26) | t(19) = -0.32, p = 0.756 | 0.695 | |
Stand to sit sub-duration | 0.61 ± 0.16 | 0.62 ± 0.15 | 0.01 (−0.13 0.14) | t(19) = -0.54, p = 0.598 | 0.903 | |
TUG | Completion duration | 10.83 ± 2.71 | 10.32 ± 3.21 | −0.51 (−3.33 2.32) | t(20) = 1.62, p = 0.122 | 0.874 |
Turn 1 sub-duration | 1.82 ± 0.73 | 1.78 ± 0.63 | −0.04 (−1.05 0.98) | t(20) = 0.34, p = 0.740 | 0.721 | |
Turn 2 sub-duration | 2.18 ± 0.76 | 2.04 ± 0.71 | −0.14 (−1.28 1.00) | t(20) = 1.07, p = 0.295 | 0.684 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Bergem, J.S.; van Doorn, P.F.; Hoogendoorn, E.M.; Geerse, D.J.; Roerdink, M. Gait and Balance Assessments with Augmented Reality Glasses in People with Parkinson’s Disease: Concurrent Validity and Test–Retest Reliability. Sensors 2024, 24, 5485. https://doi.org/10.3390/s24175485
van Bergem JS, van Doorn PF, Hoogendoorn EM, Geerse DJ, Roerdink M. Gait and Balance Assessments with Augmented Reality Glasses in People with Parkinson’s Disease: Concurrent Validity and Test–Retest Reliability. Sensors. 2024; 24(17):5485. https://doi.org/10.3390/s24175485
Chicago/Turabian Stylevan Bergem, Jara S., Pieter F. van Doorn, Eva M. Hoogendoorn, Daphne J. Geerse, and Melvyn Roerdink. 2024. "Gait and Balance Assessments with Augmented Reality Glasses in People with Parkinson’s Disease: Concurrent Validity and Test–Retest Reliability" Sensors 24, no. 17: 5485. https://doi.org/10.3390/s24175485
APA Stylevan Bergem, J. S., van Doorn, P. F., Hoogendoorn, E. M., Geerse, D. J., & Roerdink, M. (2024). Gait and Balance Assessments with Augmented Reality Glasses in People with Parkinson’s Disease: Concurrent Validity and Test–Retest Reliability. Sensors, 24(17), 5485. https://doi.org/10.3390/s24175485