Wirelessly Powered Visible Light-Emitting Implant for Surgical Guidance during Lumpectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Wirelessly-Powered LED-Based Localization Device
2.2. Device Receiver Antenna Design
2.3. WPT Circuit Design
2.4. Wireless Powering System
2.5. Device Optical Power Evaluation
2.6. Device Temperature Measurement
3. Results
3.1. Measurement of Optical Power Emission
3.2. Ex Vivo Tissue Demonstration and Evaluation of the Localization System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, M.J.; Schwartzman, A.; Zhang, J.; Liu, X. Ambulatory Surgery Data from Hospitals and Ambulatory Surgery Centers: United States, 2010. Natl. Health Stat. Rep.. 2017, pp. 1–15. Available online: https://europepmc.org/article/med/28256998 (accessed on 1 July 2024).
- Lovrics, P.; Cornacchi, S.; Vora, R.; Goldsmith, C.; Kahnamoui, K. Systematic review of radioguided surgery for non-palpable breast cancer. Eur. J. Surg. Oncol. (EJSO) 2011, 37, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Giaquinto, A.N.; Miller, K.D.; Tossas, K.Y.; Winn, R.A.; Jemal, A.; Siegel, R.L. Cancer statistics for African American/Black People 2022. CA Cancer J. Clin. 2022, 72, 202–229. [Google Scholar] [CrossRef] [PubMed]
- Fosko, N.K.; Gribkova, Y.; Krupa, K.; Jain, K.; Moore, D.; Chen, C.; Potdevin, L.; Kumar, S.; Eladoumikdachi, F.; Kowzun, M.J. The use of intraoperative ultrasound during breast conserving surgery. Clin. Breast Cancer 2023, 23, 54–59. [Google Scholar] [CrossRef]
- Hayes, M.K. Update on preoperative breast localization. Radiol. Clin. N. Am. 2017, 55, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Snider, H.C.; Morrison, D.G. Intraoperative ultrasound localization of nonpalpable breast lesions. Ann. Surg. Oncol. 1999, 6, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Yim, J.H.; Barton, P.; Weber, B.; Radford, D.; Levy, J.; Monsees, B.; Flanagan, F.; Norton, J.A.; Doherty, G.M. Mammographically detected breast cancer. Benefits of stereotactic core versus wire localization biopsy. Ann. Surg. 1996, 223, 688. [Google Scholar] [CrossRef]
- Montrey, J.S.; Levy, J.; Brenner, R. Wire fragments after needle localization. AJR Am. J. Roentgenol. 1996, 167, 1267–1269. [Google Scholar] [CrossRef]
- Mayo, R.C., III; Kalambo, M.J.; Parikh, J.R. Preoperative localization of breast lesions: Current techniques. Clin. Imaging 2019, 56, 1–8. [Google Scholar] [CrossRef]
- Nguyen, C.L.; Cui, R.; Zhou, M.; Ali, F.; Easwaralingam, N.; Chan, B.; Graham, S.; Azimi, F.; Mak, C.; Warrier, S. Cost-Effectiveness of Radar Localisation Versus Wire Localisation for Wide Local Excision of Non-palpable Breast Cancer. Ann. Surg. Oncol. 2024, 31, 3916–3925. [Google Scholar] [CrossRef]
- Mango, V.; Ha, R.; Gomberawalla, A.; Wynn, R.; Feldman, S. Evaluation of the SAVI SCOUT surgical guidance system for localization and excision of nonpalpable breast lesions: A feasibility study. Am. J. Roentgenol. 2016, 207, W69–W72. [Google Scholar] [CrossRef]
- Garzotto, F.; Comoretto, R.I.; Michieletto, S.; Franzoso, G.; Mele, M.L.; Gregori, D.; Bonavina, M.G.; Bozza, F.; Caumo, F.; Saibene, T. Preoperative non-palpable breast lesion localization, innovative techniques and clinical outcomes in surgical practice: A systematic review and meta-analysis. Breast 2021, 58, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Kasales, C. Wireless localization of breast lesions: An update. Semin. Roentgenol. 2022, 57, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Lowes, S.; El Tahir, S.; Koo, S.; Amonkar, S.; Leaver, A.; Milligan, R. Pre-operative localisation of axillary lymph nodes using radiofrequency identification (RFID) tags: A feasibility assessment in 75 cases. Clin. Radiol. 2023, 78, e668–e675. [Google Scholar] [CrossRef]
- Jadeja, P.H.; Mango, V.; Patel, S.; Friedlander, L.; Desperito, E.; Ayala-Bustamante, E.; Wynn, R.; Chen-Seetoo, M.; Taback, B.; Feldman, S. Utilization of multiple SAVI SCOUT surgical guidance system reflectors in the same breast: A single-institution feasibility study. Breast J. 2018, 24, 531–534. [Google Scholar] [CrossRef]
- Mango, V.L.; Wynn, R.T.; Feldman, S.; Friedlander, L.; Desperito, E.; Patel, S.N.; Gomberawalla, A.; Ha, R. Beyond wires and seeds: Reflector-guided breast lesion localization and excision. Radiology 2017, 284, 365–371. [Google Scholar] [CrossRef]
- Harvey, J.R.; Lim, Y.; Murphy, J.; Howe, M.; Morris, J.; Goyal, A.; Maxwell, A.J. Safety and feasibility of breast lesion localization using magnetic seeds (Magseed): A multi-centre, open-label cohort study. Breast Cancer Res. Treat. 2018, 169, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Rho, S.; Stillwell, R.A.; Fay, P.; Ludwig, K.K.; O’Sullivan, T.D. Optically-enhanced wireless breast lesion localization device for use during lumpectomy. In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XX; SPIE: San Francisco, CA, USA, 2022; pp. 88–92. [Google Scholar]
- Rho, S.; Sanders, H.S.; Smith, B.D.; O’Sullivan, T.D. Miniature wireless LED-device for photodynamic-induced cell pyroptosis. Photodiagn. Photodyn. Ther. 2024, 47, 104209. [Google Scholar] [CrossRef]
- Karimi, M.; Jouaicha, H.; Lellouche, F.; Bouchard, P.-A.; Sawan, M.; Gosselin, B. A 6.78-MHz robust WPT system with inductive link bandwidth extended for cm-sized implantable medical devices. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4196–4199. [Google Scholar]
- Tromberg, B.J.; Zhang, Z.; Leproux, A.; O’Sullivan, T.D.; Cerussi, A.E.; Carpenter, P.M.; Mehta, R.S.; Roblyer, D.; Yang, W.; Paulsen, K.D. Predicting Responses to Neoadjuvant Chemotherapy in Breast Cancer: ACRIN 6691 Trial of Diffuse Optical Spectroscopic ImagingOptical Imaging of Breast Cancer Chemotherapy Response. Cancer Res. 2016, 76, 5933–5944. [Google Scholar] [CrossRef]
- O’Sullivan, T.D.; Cerussi, A.E.; Tromberg, B.J.; Cuccia, D.J. Diffuse optical imaging using spatially and temporally modulated light. J. Biomed. Opt. 2012, 17, 071311. [Google Scholar] [CrossRef]
- Ghosh, N.; Mohanty, S.; Majumder, S.; Gupta, P. Measurement of optical transport properties of normal and malignant human breast tissue. Appl. Opt. 2001, 40, 176–184. [Google Scholar] [CrossRef]
- Palmer, G.M.; Zhu, C.; Breslin, T.M.; Xu, F.; Gilchrist, K.W.; Ramanujam, N. Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis. Appl. Opt. 2006, 45, 1072–1078. [Google Scholar] [CrossRef]
- Vasudevan, S.; Forghani, F.; Campbell, C.; Bedford, S.; O’Sullivan, T.D. Method for quantitative broadband diffuse optical spectroscopy of tumor-like inclusions. Appl. Sci. 2020, 10, 1419. [Google Scholar] [CrossRef]
- Vasudevan, S.; Campbell, C.; Liu, F.; O’Sullivan, T.D. Broadband diffuse optical spectroscopy of absolute methemoglobin concentration can distinguish benign and malignant breast lesions. J. Biomed. Opt. 2021, 26, 065004. [Google Scholar] [CrossRef]
- O’Sullivan, T.D. Diffuse optical spectroscopy from bench to bedside to wearable to implant. In Multiscale Imaging and Spectroscopy II; SPIE: Bellingham, DC, USA, 2021; p. 116220J. [Google Scholar]
- Stillwell, R.A.; Kitsmiller, V.J.; Wei, A.Y.; Chong, A.; Senn, L.; O’Sullivan, T.D. A scalable, multi-wavelength, broad bandwidth frequency-domain near-infrared spectroscopy platform for real-time quantitative tissue optical imaging. Biomed. Opt. Express 2021, 12, 7261–7279. [Google Scholar] [CrossRef] [PubMed]
- Tromberg, B.J.; Cerussi, A.; Shah, N.; Compton, M.; Durkin, A.; Hsiang, D.; Butler, J.; Mehta, R. Imaging in breast cancer: Diffuse optics in breast cancer: Detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy. Breast Cancer Res. 2005, 7, 279. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.; Ellis, I.O. An overview of assessment of prognostic and predictive factors in breast cancer needle core biopsy specimens. J. Clin. Pathol. 2007, 60, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Brenner, R.J.; Gordon, L.M. Malignant seeding following percutaneous breast biopsy: Documentation with comprehensive imaging and clinical implications. Breast J. 2011, 17, 651–656. [Google Scholar] [CrossRef]
- Wagih, M.; Komolafe, A.; Ullah, I.; Weddell, A.S.; Beeby, S. A wearable all-printed textile-based 6.78 MHz 15 W-output wireless power transfer system and its screen-printed joule heater application. IEEE Trans. Ind. Electron. 2023, 71, 3741–3750. [Google Scholar] [CrossRef]
- Gao, S.S.; Luo, Q.; Zhu, F. Circularly Polarized Antennas; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Fotopoulou, K.; Flynn, B.W. Wireless power transfer in loosely coupled links: Coil misalignment model. IEEE Trans. Magn. 2010, 47, 416–430. [Google Scholar] [CrossRef]
- Karnaushenko, D.D.; Karnaushenko, D.; Makarov, D.; Schmidt, O.G. Compact helical antenna for smart implant applications. NPG Asia Mater. 2015, 7, e188. [Google Scholar] [CrossRef]
- Stadler, A. Radiated magnetic field of a low-frequency ferrite rod antenna. In Proceedings of the 2011 7th International Conference-Workshop Compatibility and Power Electronics (CPE), Tallinn, Estonia, 1–3 June 2011; IEEE: Piscataway, NJ, USA; pp. 283–288. [Google Scholar]
- Rho, S.; Sanders, H.; Morsby, J.J.; Smith, B.D.; O’Sullivan, T.D. Miniature syringe-injectable wireless light source for photodynamic therapy with rose bengal. In Clinical and Translational Biophotonics; Optica Publishing Group: Washington, DC, USA, 2024; p. TW3B.2. [Google Scholar]
- Reusch, D.; Strydom, J. Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load converter. IEEE Trans. Power Electron. 2013, 29, 2008–2015. [Google Scholar] [CrossRef]
- Sample, A.P.; Meyer, D.T.; Smith, J.R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 2010, 58, 544–554. [Google Scholar] [CrossRef]
- Kok, H.P.; Cressman, E.N.; Ceelen, W.; Brace, C.L.; Ivkov, R.; Grüll, H.; Ter Haar, G.; Wust, P.; Crezee, J. Heating technology for malignant tumors: A review. Int. J. Hyperth. 2020, 37, 711–741. [Google Scholar] [CrossRef]
- Yamagishi, K.; Kirino, I.; Takahashi, I.; Amano, H.; Takeoka, S.; Morimoto, Y.; Fujie, T. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy. Nat. Biomed. Eng. 2019, 3, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Kirino, I.; Fujita, K.; Sakanoue, K.; Sugita, R.; Yamagishi, K.; Takeoka, S.; Fujie, T.; Uemoto, S.; Morimoto, Y. Metronomic photodynamic therapy using an implantable LED device and orally administered 5-aminolevulinic acid. Sci. Rep. 2020, 10, 22017. [Google Scholar] [CrossRef]
- Marquez, G.; Wang, L.V.; Lin, S.-P.; Schwartz, J.A.; Thomsen, S.L. Anisotropy in the absorption and scattering spectra of chicken breast tissue. Appl. Opt. 1998, 37, 798–804. [Google Scholar] [CrossRef]
- Bargo, P.R.; Prahl, S.A.; Goodell, T.T.; Sleven, R.; Koval, G.; Blair, G.; Jacques, S.L. In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy. J. Biomed. Opt. 2005, 10, 034018. [Google Scholar] [CrossRef]
- Banitalebi, H.; Skaane, P. Migration of the breast biopsy localization wire to the pulmonary hilus. Acta Radiol. 2005, 46, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Srour, M.K.; Kim, S.; Amersi, F.; Giuliano, A.E.; Chung, A. Comparison of wire localization, radioactive seed, and Savi scout® radar for management of surgical breast disease. Breast J. 2020, 26, 406–413. [Google Scholar] [CrossRef]
- Dua, S.M.; Gray, R.J.; Keshtgar, M. Strategies for localisation of impalpable breast lesions. Breast 2011, 20, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Banys-Paluchowski, M.; Kühn, T.; Masannat, Y.; Rubio, I.; de Boniface, J.; Ditsch, N.; Karadeniz Cakmak, G.; Karakatsanis, A.; Dave, R.; Hahn, M. Localization Techniques for Non-Palpable Breast Lesions: Current Status, Knowledge Gaps, and Rationale for the MELODY Study (EUBREAST-4/iBRA-NET, NCT 05559411). Cancers 2023, 15, 1173. [Google Scholar] [CrossRef]
- Sharek, D.; Zuley, M.L.; Zhang, J.Y.; Soran, A.; Ahrendt, G.M.; Ganott, M.A. Radioactive seed localization versus wire localization for lumpectomies: A comparison of outcomes. Am. J. Roentgenol. 2015, 204, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.E.; Garcia-Henriquez, N.; Glancy, M.J.; Whitworth, P.; Cox, J.M.; Themar-Geck, M.; Prati, R.; Jung, M.; Russell, S.; Appleton, K. Pilot study of a new nonradioactive surgical guidance technology for locating nonpalpable breast lesions. Ann. Surg. Oncol. 2016, 23, 1824–1830. [Google Scholar] [CrossRef]
- Jeffries, D.O.; Dossett, L.A.; Jorns, J.M. Localization for breast surgery: The next generation. Arch. Pathol. Lab. Med. 2017, 141, 1324–1329. [Google Scholar] [CrossRef] [PubMed]
- McGugin, C.; Spivey, T.; Coopey, S.; Smith, B.; Kelly, B.; Gadd, M.; Hughes, K.; Dontchos, B.; Specht, M. Radiofrequency identification tag localization is comparable to wire localization for non-palpable breast lesions. Breast Cancer Res. Treat. 2019, 177, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.N.; Mango, V.L.; Jadeja, P.; Friedlander, L.; Desperito, E.; Wynn, R.; Feldman, S.; Ha, R. Reflector-guided breast tumor localization versus wire localization for lumpectomies: A comparison of surgical outcomes. Clin. Imaging 2018, 47, 14–17. [Google Scholar] [CrossRef]
- Cox, C.E.; Russell, S.; Prowler, V.; Carter, E.; Beard, A.; Mehindru, A.; Blumencranz, P.; Allen, K.; Portillo, M.; Whitworth, P. A prospective, single arm, multi-site, clinical evaluation of a nonradioactive surgical guidance technology for the location of nonpalpable breast lesions during excision. Ann. Surg. Oncol. 2016, 23, 3168–3174. [Google Scholar] [CrossRef]
- Cha, G.D.; Kim, D.-H.; Kim, D.C. Wearable and Implantable Light-Emitting Diodes and Their Biomedical Applications. Korean J. Chem. Eng. 2024, 41, 1–24. [Google Scholar] [CrossRef]
- Filatova, S.A.; Shcherbakov, I.A.; Tsvetkov, V.B. Optical properties of animal tissues in the wavelength range from 350 to 2600 nm. J. Biomed. Opt. 2017, 22, 035009. [Google Scholar] [CrossRef]
- Arslan, H.; Dolukan, Y.B. Determination of the optical properties of bovine liver tissue using integrating sphere technique. Acad. Perspect. 2018, 1, 248–252. [Google Scholar] [CrossRef]
- O’Sullivan, T.D.; Leproux, A.; Chen, J.-H.; Bahri, S.; Matlock, A.; Roblyer, D.; McLaren, C.E.; Chen, W.-P.; Cerussi, A.E.; Su, M.-Y. Optical imaging correlates with magnetic resonance imaging breast density and revealscomposition changes during neoadjuvant chemotherapy. Breast Cancer Res. 2013, 15, R14. [Google Scholar] [CrossRef] [PubMed]
Radioactive Seed | Radar Reflector | Magnetic Seed | Radiofrequency ID | Visible Light Localization (This Work) | |
---|---|---|---|---|---|
Manufacturer (brand name) | IsoAid | Merit Medical (Scout) | Stryker (MOLLI) | Hologic (LOCalizer) | N/A |
Maximum depth for detection | None | 6 cm | 4 cm | 3~6 cm | 3~4 cm |
Introducer gauge | 18 gauge | 16 gauge | 18 gauge | 12 gauge | 12 gauge |
Size implanted device | 4.5 mm × 1 mm | 12 mm × 1.6 mm | 5 mm × 1 mm | 11 mm × 2 mm | 9 mm × 2 mm |
Minimum distance to adjacent marker | 2 cm | 2 cm | 2 cm | 2 cm | 0 cm |
Detection technology | Gamma detector | Infrared trigger, electromagnetic Signal | Alternating magnetic field induces magnet in seed | RFID trigger and signal | Visible light |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rho, S.; Stillwell, R.A.; Yan, K.; de Almeida Barreto, A.F.B.; Smith, J.R.; Fay, P.; Police, A.M.; O’Sullivan, T.D. Wirelessly Powered Visible Light-Emitting Implant for Surgical Guidance during Lumpectomy. Sensors 2024, 24, 5639. https://doi.org/10.3390/s24175639
Rho S, Stillwell RA, Yan K, de Almeida Barreto AFB, Smith JR, Fay P, Police AM, O’Sullivan TD. Wirelessly Powered Visible Light-Emitting Implant for Surgical Guidance during Lumpectomy. Sensors. 2024; 24(17):5639. https://doi.org/10.3390/s24175639
Chicago/Turabian StyleRho, Sunghoon, Roy A. Stillwell, Kedi Yan, Ana Flavia Borges de Almeida Barreto, Joshua R. Smith, Patrick Fay, Alice M. Police, and Thomas D. O’Sullivan. 2024. "Wirelessly Powered Visible Light-Emitting Implant for Surgical Guidance during Lumpectomy" Sensors 24, no. 17: 5639. https://doi.org/10.3390/s24175639
APA StyleRho, S., Stillwell, R. A., Yan, K., de Almeida Barreto, A. F. B., Smith, J. R., Fay, P., Police, A. M., & O’Sullivan, T. D. (2024). Wirelessly Powered Visible Light-Emitting Implant for Surgical Guidance during Lumpectomy. Sensors, 24(17), 5639. https://doi.org/10.3390/s24175639