Variational Mode Decomposition Analysis of Electroencephalograms during General Anesthesia: Using the Grey Wolf Optimizer to Determine Hyperparameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anesthesia Management and Data Acquisition
2.2. Algorithm for VMD and the Hilbert Transform
- 1.
- The first step computes the analytic signal associated with each IMF according to the Hilbert transform (Formula (1)).
- 2.
- The second step involves demodulating the analytic signal to the baseband by multiplying it with an exponential function, which is adjusted to the respective estimated central frequency .
- 3.
- The third step estimates the bandwidth by using the Gaussian smoothness of the demodulated signal, which involves calculating the squared L2 norm of the slope of the demodulated analytic signal. It then computes the associated analytic signal using the Hilbert transform to obtain the one-sided frequency spectrum of each intrinsic mode uk.
Algorithm 1. Optimization Concept for VMD [14]. | |
initialization repeat for Update for all | |
(5) | |
Update | |
(6) | |
end for Dual ascent for all | |
(7) | |
until convergence: | |
(8) |
2.3. Grey Wolf Optimizer
2.4. The Fitness Function: Envelope Entropy
3. Results
3.1. Convergence Status of K, PF, and Fitness Values in GWO
3.2. Temporal Changes in the K, PF, and Fitness Values According to the GWO
3.3. VMD Analysis under GWO Support during the Three Phases of General Anesthesia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laferriere-Langlois, P.; Morisson, L.; Jeffries, S.; Duclos, C.; Espitalier, F.; Richebe, P. Depth of anesthesia and nociception monitoring: Current state and vision for 2050. Anesth. Analg. 2024, 138, 295–307. [Google Scholar] [CrossRef]
- Roche, D.; Mahon, P. Depth of anesthesia monitoring. Anesth. Clin. 2021, 39, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Shander, A.; Lobel, G.P.; Mathews, D.M. Brain monitoring and the depth of anesthesia: Another goldilocks dilemma. Anesth. Analg. 2018, 126, 705–709. [Google Scholar] [CrossRef]
- Chaddad, A.; Wu, Y.; Kateb, R.; Bourid, A. Electroencephalography signal processing: A comprehensive review and analysis of methods and techniques. Sensors 2023, 23, 6434. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Meena, H.K. Emerging trends in EEG signal processing: A systematic review. SN Comput. Sci. 2024, 5, 415. [Google Scholar] [CrossRef]
- Ma, Z.; Hua, H.; You, C.; Ma, Z.; Guo, W.; Yang, X.; Qiu, S.; Zhao, N.; Zhang, Y.; Ho, D.; et al. FlexiPulse: A machine-learning-enabled flexible pulse sensor for cardiovascular disease diagnostics. Cell Rep. Phys. Sci. 2023, 4, 101690. [Google Scholar] [CrossRef]
- Velcescu, A.; Lindley, A.; Cursio, C.; Krachunov, S.; Beach, C.; Brown, C.A.; Jones, A.K.P.; Casson, A.J. Flexible 3D-printed EEG electrodes. Sensors 2019, 19, 1650. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, C.; Cui, V.; Xiu, M.; Wu, A. Electroencephalography: Clinical applications during the perioperative period. Front. Med. 2020, 7, 251. [Google Scholar] [CrossRef]
- Yuan, I.; Xu, T.; Kurth, C.D. Using electroencephalography (EEG) to guide propofol and sevoflurane dosing in pediatric anesthesia. Anesth. Clin. 2020, 38, 709–725. [Google Scholar] [CrossRef]
- Schultz, B.; Schultz, M.; Boehne, M.; Dennhardt, N. EEG monitoring during anesthesia in children aged 0 to 18 months: Amplitude-integrated EEG and age effects. BMC Pediatr. 2022, 22, 156. [Google Scholar] [CrossRef]
- Huang, N.; Shen, Z.; Long, S.; Wu, M.; Shih, H.; Zheng, Q.; Yen, N.-C.; Tung, C.; Liu, H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Obata, Y.; Yamada, T.; Akiyama, K.; Sawa, T. Time-trend analysis of the center frequency of the intrinsic mode function from the Hilbert-Huang transform of electroencephalography during general anesthesia: A retrospective observational study. BMC Anesth. 2023, 23, 125. [Google Scholar] [CrossRef]
- Yamada, T.; Obata, Y.; Sudo, K.; Kinoshita, M.; Naito, Y.; Sawa, T. Changes in EEG frequency characteristics during sevoflurane general anesthesia: Feature extraction by variational mode decomposition. J. Clin. Monit. Comput. 2023, 37, 1179–1192. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Wang, Y. An adaptive variational mode decomposition technique with differential evolution algorithm and its application analysis. Shock Vib. 2021, 2030, 128. [Google Scholar] [CrossRef]
- Hou, Y.; Gao, H.; Wang, J.; Du, C. Improved grey wolf optimization algorithm and application. Sensors 2022, 22, 318. [Google Scholar] [CrossRef]
- Zang, X.; Li, D.; Li, J.; Li, Y. Grey wolf optimization-based variational mode decomposition for magnetotelluric data combined with detrended fluctuation analysis. Acta Genophys. 2022, 2022, 111–120. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Nadweh, S.; Khaddam, O.; Hayeh, G.; Atieh, B.; Haes Alhelou, H. Steady state analysis of modern industrial variable speed drive systems using controllers adjusted via grey wolf algorithm & particle swarm optimization. Heliyon 2020, 6, e05438. [Google Scholar] [CrossRef] [PubMed]
- Sawa, T. teijisw/EEG_DataSet. Available online: https://github.com/teijisw/EEG_DataSet/tree/master/general_anesth_propofol (accessed on 6 July 2024).
- Sivavaraprasad, G.; Padmaja, R.S.; Ratnam, D.V. Mitigation of ionospheric scintillation effects on GNSS signals using variational mode decomposition. IEEE Geosci. Remote Sens. Lett. 2017, 14, 389–392. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, C.; Tang, G. A novel deconvolution cascaded variational mode decomposition for weak bearing fault detection with unknown signal transmission path. IEEE Sens. J. 2021, 21, 1746–1755. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Adamoğlu, A.; Demiralp, T.; Shayesteh, M.G. A wavelet transform based method to determine depth of anesthesia to prevent awareness during general anesthesia. Comput. Math. Methods Med. 2014, 2014, 354739. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, D.; Liang, Z.; Voss, L.J.; Sleigh, J.W. Analysis of depth of anesthesia with Hilbert-Huang spectral entropy. Clin. Neurophysiol. 2008, 119, 2465–2475. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, L.; Fan, S.Z.; Abbod, M.F.; Ai, Q.; Chen, K.; Shieh, J.S. Frontal EEG temporal and spectral dynamics similarity analysis between propofol and desflurane induced anesthesia using Hilbert-Huang Ttansform. Biomed. Res. Int. 2018, 2018, 4939480. [Google Scholar] [CrossRef]
- Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
K | PF | Fitness | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Patient | Patient | Patient | |||||||||||
#1 | #2 | #3 | Mean ± SD | #1 | #2 | #3 | Mean ± SD | #1 | #2 | #3 | Mean ± SD | ||
Converge value | 2.35 | 2.7 | 2.8 | 2.6 ± 0.2 | 3178 | 2918 | 2315 | 2804 ± 443 | −9.8769 | −9.8156 | −9.7289 | −9.8071 ± 0.07 | |
Iteration | % | % | % | ||||||||||
1 | 143 | 117 | 133 | 131 ± 13 | 78 | 73 | 108 | 86 ± 19 | 99.9248 | 99.9940 | 99.7606 | 99.8361 ± 0.0829 | |
2 | 149 | 113 | 120 | 127 ± 19 | 82 | 80 | 120 | 94 ± 23 | 99.8326 | 99.8327 | 99.7607 | 99.8562 ± 0.0662 | |
3 | 143 | 111 | 104 | 119 ± 21 | 96 | 82 | 145 | 108 ± 33 | 99.8325 | 99.8346 | 99.8927 | 99.8946 ± 0.0610 | |
4 | 149 | 111 | 100 | 120 ± 26 | 96 | 82 | 138 | 106 ± 29 | 99.8346 | 99.8346 | 99.9371 | 99.9141 ± 0.0610 | |
5 | 143 | 111 | 96 | 117 ± 24 | 100 | 90 | 144 | 111 ± 29 | 99.9729 | 99.8346 | 99.9370 | 99.9200 ± 0.0708 | |
6 | 121 | 100 | 96 | 106 ± 14 | 91 | 89 | 133 | 104 ± 24 | 99.9902 | 99.9881 | 99.9370 | 99.9802 ± 0.0678 | |
7 | 121 | 100 | 93 | 105 ± 15 | 91 | 89 | 130 | 104 ± 23 | 99.9902 | 99.9881 | 99.9677 | 99.9820 ± 0.0155 | |
8 | 106 | 100 | 95 | 100 ± 6 | 97 | 95 | 125 | 106 ± 17 | 99.9939 | 99.9909 | 99.9733 | 99.9860 ± 0.0125 | |
9 | 100 | 100 | 93 | 98 ± 4 | 100 | 100 | 118 | 106 ± 10 | 100.000 | 100.000 | 99.9733 | 99.9945 ± 0.0111 | |
10 | 100 | 100 | 93 | 98 ± 4 | 100 | 100 | 112 | 104 ± 7 | 100.000 | 100.000 | 99.9910 | 99.9970 ± 0.0096 | |
11 | 100 | 100 | 98 | 99 ± 1 | 100 | 100 | 103 | 101 ± 2 | 100.000 | 100.000 | 99.9970 | 99.9990 ± 0.0052 | |
12 | 100 | 100 | 98 | 99 ± 1 | 100 | 100 | 103 | 101 ± 2 | 100.000 | 100.000 | 99.9976 | 99.9992 ± 0.0017 | |
13 | 100 | 100 | 100 | 100 ± 0 | 100 | 100 | 101 | 100 ± 1 | 100.000 | 100.000 | 99.9986 | 99.9995 ± 0.0014 | |
14 | 100 | 100 | 100 | 100 ± 0 | 100 | 100 | 101 | 100 ± 1 | 100.000 | 100.000 | 99.9988 | 99.9996 ± 0.0008 | |
15 | 100 | 100 | 100 | 100 ± 0 | 100 | 100 | 101 | 100 ± 1 | 100.000 | 100.000 | 99.9988 | 99.9996 ± 0.0007 | |
16 | 100 | 100 | 100 | 100 ± 0 | 100 | 100 | 101 | 100 ± 0 | 100.000 | 100.000 | 99.9989 | 99.9996 ± 0.0007 | |
17 | 100 | 100 | 100 | 100 ± 0 | 100 | 100 | 101 | 100 ± 0 | 100.000 | 100.000 | 99.9990 | 99.9997 ± 0.0006 | |
18 | 100 | 100 | 100 | 100 ± 0 | 100 | 100 | 100 | 100 ± 0 | 100.000 | 100.000 | 100.000 | 100.0000 ± 0.000 | |
19 | 100 | 100 | 100 | 100 ± 0 | 100 | 100 | 100 | 100 ± 0 | 100.000 | 100.000 | 100.000 | 100.0000 ± 0.000 | |
20 | 100 | 100 | 100 | 100 ± 0 | 100 | 100 | 100 | 100 ± 0 | 100.000 | 100.000 | 100.000 | 100.0000 ± 0.000 |
K | PF | Fitness | |||||||
---|---|---|---|---|---|---|---|---|---|
Before Emergence | After Emergence | Before Emergence | After Emergence | Before Emergence | After Emergence | ||||
Patient | Mean ± SD | Mean ± SD | p-Value | Mean ± SD | Mean ± SD | p-Value | Mean ± SD | Mean ± SD | p-Value |
#1 | 2.3 ± 0.7 | 2.5 ± 1.0 | 0.525 | 2722 ± 1792 | 3190 ± 1914 | 0.309 | −5.7779 ± 0.0898 | −9.4826 ± 0.4004 | <0.001 * |
#2 | 2.4 ± 0.8 | 3.0 ± 1.4 | 0.014 * | 2881 ± 1678 | 3071 ± 1772 | 0.675 | −9.7762 ± 0.0728 | −9.6799± 0.2341 | 0.016 * |
#3 | 2.6 ± 1.0 | 2.8 ± 1.4 | 0.624 | 2271 ± 1834 | 2271 ± 1922 | 0.107 | −9.7607 ± 0.0714 | −9.6886 ± 0.1563 | 0.008 * |
Mean | 2.4 ± 0.8 | 2.7 ± 1.3 | 0.016 * | 2625 ± 1768 | 2844 ± 1869 | 0.989 | −8.4383 ± 0.0780 | −9.6170± 0.2636 | <0.001 * |
SD | 0.2 ± 0.1 | 0.3 ± 0.2 | 316 ± 81 | 500 ± 84 | 2.3039 ± 0.0103 | 0.1165 ± 0.1247 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kushimoto, K.; Obata, Y.; Yamada, T.; Kinoshita, M.; Akiyama, K.; Sawa, T. Variational Mode Decomposition Analysis of Electroencephalograms during General Anesthesia: Using the Grey Wolf Optimizer to Determine Hyperparameters. Sensors 2024, 24, 5749. https://doi.org/10.3390/s24175749
Kushimoto K, Obata Y, Yamada T, Kinoshita M, Akiyama K, Sawa T. Variational Mode Decomposition Analysis of Electroencephalograms during General Anesthesia: Using the Grey Wolf Optimizer to Determine Hyperparameters. Sensors. 2024; 24(17):5749. https://doi.org/10.3390/s24175749
Chicago/Turabian StyleKushimoto, Kosuke, Yurie Obata, Tomomi Yamada, Mao Kinoshita, Koichi Akiyama, and Teiji Sawa. 2024. "Variational Mode Decomposition Analysis of Electroencephalograms during General Anesthesia: Using the Grey Wolf Optimizer to Determine Hyperparameters" Sensors 24, no. 17: 5749. https://doi.org/10.3390/s24175749
APA StyleKushimoto, K., Obata, Y., Yamada, T., Kinoshita, M., Akiyama, K., & Sawa, T. (2024). Variational Mode Decomposition Analysis of Electroencephalograms during General Anesthesia: Using the Grey Wolf Optimizer to Determine Hyperparameters. Sensors, 24(17), 5749. https://doi.org/10.3390/s24175749