Improvement of a Green’s Function Estimation for a Moving Source Using the Waveguide Invariant Theory
Abstract
:1. Introduction
2. Method
2.1. Estimation of Green’s Function
2.2. Improvement of SNR
2.3. Numerical Simulation
3. SAVEX15 Experiment
4. Experimental Results
4.1. Green’s Functions from the Ship Noise
4.2. Improvement of Green’s Functions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Waveguide Invariant Theory
Appendix B. Green’s Function at Adjacent Range and Frequency
References
- Kilfoyle, D.; Baggeroer, A. The state of the art in underwater acoustic telemetry. IEEE J. Ocean. Eng. 2000, 25, 4–27. [Google Scholar] [CrossRef]
- Chapman, N.; Shang, E. Review of geoacoustic inversion in underwater acoustics. J. Theor. Comput. Acoust. 2021, 29, 2130004. [Google Scholar] [CrossRef]
- Diachok, O.; Caiti, A.; Gerstoft, P.; Schmidt, H. Full Field Inversion Methods in Ocean and Seismo-Acoustics; Springer Science & Business Media: New York, NY, USA, 1995. [Google Scholar]
- Baggeroer, A.; Kuperman, W.; Mikhalevsky, P. An overview of matched field methods in ocean acoustics. IEEE J. Ocean. Eng. 1993, 18, 401–424. [Google Scholar] [CrossRef]
- Collins, M.; Kuperman, W. Focalization: Environmental focusing and source localization. J. Acoust. Soc. Am. 1991, 90, 1410–1422. [Google Scholar] [CrossRef]
- Baggeroer, B.; Kuperman, W.; Schmidt, H. Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem. J. Acoust. Soc. Am. 1988, 83, 571–587. [Google Scholar] [CrossRef]
- Krolik, J.; Jeffrey, L. Matched-field minimum variance beamforming in a random ocean channel. J. Acoust. Soc. Am. 1992, 92, 1408–1419. [Google Scholar] [CrossRef]
- Jensen, F.; Kuperman, W.; Porter, M.; Schmidt, H. Computational Ocean Acoustics; Springer: New York, NY, USA, 2011. [Google Scholar]
- Schmidt, H.; Baggeroer, A.; Kuperman, W.; Scheer, E. Environmentally tolerant beamforming for high-resolution matched field processing: Deterministic mismatch. J. Acoust. Soc. Am. 1990, 88, 1851–1862. [Google Scholar] [CrossRef]
- D’spain, G.; Murray, J.; Hodgkiss, W.; Booth, N.; Schey, P. Mirages in shallow water matched field processing. J. Acoust. Soc. Am. 1999, 105, 3245–3265. [Google Scholar] [CrossRef]
- Sabra, K.; Song, H.; Dowling, D. Ray-based blind deconvolution in ocean sound channels. J. Acoust. Soc. Am. 2010, 127, EL42–EL47. [Google Scholar] [CrossRef]
- Byun, S.; Verlinden, C.; Sabra, K. Blind deconvolution of shipping sources in an ocean waveguide. J. Acoust. Soc. Am. 2017, 141, 797–807. [Google Scholar] [CrossRef]
- Chuprov, S. Interference structure of a sound field in a layered ocean. In Ocean Acoustics, Current Status; Brekhovskikh, L.M., Andreyeva, I.B., Eds.; Nauka: Moscow, Russia, 1982; pp. 71–91. [Google Scholar]
- Cockrell, K.; Schmidt, H. A modal Wentzel-Kramers-Brillouin approach to calculating the waveguide invariant for non-ideal waveguides. J. Acoust. Soc. Am. 2011, 130, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Brekhovskikh, L.; Lysanov, Y. Fundamentals of Ocean Acoustics; Springer: New York, NY, USA, 1991. [Google Scholar]
- Song, H.; Byun, G. Extrapolating Green’s functions using the waveguide invariant theory. J. Acoust. Soc. Am. 2020, 147, 2150–2158. [Google Scholar] [CrossRef]
- Song, H.; Cho, C.; Hodgkiss, W.; Nam, S.; Kim, S.; Kim, B. Underwater sound channel in the northeastern East China Sea. Ocean Eng. 2018, 147, 370–374. [Google Scholar] [CrossRef]
- Durofchalk, N.; Sabra, K. Analysis of the ray-based blind deconvolution algorithm for shipping sources. J. Acoust. Soc. Am. 2020, 147, 1927–1938. [Google Scholar] [CrossRef] [PubMed]
- Cockrell, K. Understanding and Utilizing Waveguide Invariant Range-Frequency Striations in Ocean Acoustic Waveguides. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Yang, T. Beam intensity striations and applications. J. Acoust. Soc. Am. 2003, 113, 1342–1352. [Google Scholar] [CrossRef]
- Turgut, A.; Orr, M.; Rouseff, D. Broadband source localization using horizontal-beam acoustic intensity striations. J. Acoust. Soc. Am. 2010, 127, 73–83. [Google Scholar] [CrossRef]
- Tao, H.; Krolik, J. Waveguide invariant focusing for broadband beamforming in an oceanic waveguide. J. Acoust. Soc. Am. 2008, 123, 1338–1346. [Google Scholar] [CrossRef]
- Li, F.; Zhu, F.; Zhang, Y.; Zhang, B.; Li, W.; Luo, W. Synthetic adaptive matched field processing for moving source with a horizontal line array. J. Acoust. Soc. Am. 2021, 149, 1138–1146. [Google Scholar] [CrossRef]
- Song, H.; Kuperman, W.; Hodgkiss, W. A time-reversal mirror with variable range focusing. J. Acoust. Soc. Am. 1998, 103, 3234–3240. [Google Scholar] [CrossRef]
- Zhang, R.; Su, X.; Li, F. Improvement of low-frequency acoustic spatial correlation by frequency-shift compensation. Chin. Phys. Lett. 2006, 23, 1838–1841. [Google Scholar]
- Porter, M. The Acoustics Toolbox. Available online: http://oalib.hlsresearch.com/AcousticsToolbox/ (accessed on 21 July 2024).
- Harrison, C. The relation between the waveguide invariant, multipath impulse response, and ray cycles. J. Acoust. Soc. Am. 2011, 129, 2863–2877. [Google Scholar] [CrossRef]
- Bendat, J.; Piersol, A. Random Data: Analysis and Measurement Procedures; Wiley: New York, NY, USA, 2000; pp. 272–286, 358. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Kim, D.; Byun, G.; Kim, J.; Song, H. Improvement of a Green’s Function Estimation for a Moving Source Using the Waveguide Invariant Theory. Sensors 2024, 24, 5782. https://doi.org/10.3390/s24175782
Kim D, Kim D, Byun G, Kim J, Song H. Improvement of a Green’s Function Estimation for a Moving Source Using the Waveguide Invariant Theory. Sensors. 2024; 24(17):5782. https://doi.org/10.3390/s24175782
Chicago/Turabian StyleKim, Daehwan, Donghyeon Kim, Gihoon Byun, Jeasoo Kim, and Heechun Song. 2024. "Improvement of a Green’s Function Estimation for a Moving Source Using the Waveguide Invariant Theory" Sensors 24, no. 17: 5782. https://doi.org/10.3390/s24175782
APA StyleKim, D., Kim, D., Byun, G., Kim, J., & Song, H. (2024). Improvement of a Green’s Function Estimation for a Moving Source Using the Waveguide Invariant Theory. Sensors, 24(17), 5782. https://doi.org/10.3390/s24175782