Validation of In-House Imaging System via Code Verification on Petunia Images Collected at Increasing Fertilizer Rates and pHs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fertilizer Trial
2.1.1. Location and Experimental Conditions
2.1.2. Plants
2.1.3. Treatments
2.1.4. Imaging Acquisition
2.1.5. Experimental Design and Statistical Analysis
2.2. pH Trial
2.2.1. Location and Experimental Conditions
2.2.2. Plants
2.2.3. Treatments
2.2.4. Image Acquisition
2.2.5. Experimental Design and Statistical Analysis
2.3. Imaging Analysis for Both Trials
2.4. Measurements
3. Results
3.1. Fertilizer Trial
3.2. pH Trial
4. Discussion
4.1. Fertilizer Trial
4.2. pH Trial
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Zerafa, S. Revolutionising Agriculture: A Comprehensive Review of Remote Sensing Techniques Utilising Drones. In Proceedings of the 27th PARIS International Conference on “Advances in Agricultural, Biological & Environmental Sciences (AABES-23), Paris, France, 17–19 April 2023; pp. 60–65. [Google Scholar]
- Fernandez-Jaramillo, A.A.; Duarte-Galvan, C.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Romero-Troncoso, R.d.J.; Guevara-Gonzalez, R.G.; Millan-Almaraz, J.R. Instrumentation in developing chlorophyll fluorescence biosensing: A review. Sensors 2012, 12, 11853–11869. [Google Scholar] [CrossRef] [PubMed]
- Mustafic, A.; Roberts, E.E.; Toews, M.D.; Haidekker, M.A. LED-induced fluorescence and image analysis to detect stink bug damage in cotton bolls. J. Biol. Eng. 2013, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Legendre, R.; van Iersel, M.W. Supplemental far-red light stimulates lettuce growth: Disentangling morphological and physiological effects. Plants 2021, 10, 166. [Google Scholar] [CrossRef]
- Ojo, M.O.; Zahid, A. Deep learning in controlled environment agriculture: A review of recent advancements, challenges and prospects. Sensors 2022, 22, 7965. [Google Scholar] [CrossRef]
- Mitra, G. Essential plant nutrients and recent concepts about their uptake. In Essential Plant Nutrients: Uptake, Use Efficiency, and Management; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–36. ISBN 978-3-319-58841-4. [Google Scholar]
- Gillespie, D.P.; Kubota, C.; Miller, S.A. Effects of low pH of hydroponic nutrient solution on plant growth, nutrient uptake, and root rot disease incidence of basil (Ocimum Basilicum L.). HortScience 2020, 55, 1251–1258. [Google Scholar] [CrossRef]
- Kudirka, G.; Viršilė, A.; Sutulienė, R.; Laužikė, K.; Samuolienė, G. Precise Management of hydroponic nutrient solution pH: The effects of minor pH changes and MES buffer molarity on lettuce physiological properties. Horticulturae 2023, 9, 837. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Adhikari, R.; Nemali, K. Whole-plant tissue nitrogen content measurement using image analyses in floriculture crops. J. Environ. Hortic. 2022, 40, 22–32. [Google Scholar] [CrossRef]
- Stamford, J.D.; Vialet-Chabrand, S.; Cameron, I.; Lawson, T. Development of an accurate low cost NDVI imaging system for assessing plant health. Plant Methods 2023, 19, 9. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Determination of total nitrogen in plant material. Agron. J. 1973, 65, 109–112. [Google Scholar] [CrossRef]
- Twyman, R.M. Sample Dissolution for Elemental Analysis: Wet Digestion; Elsevier: Amsterdam, The Netherlands, 2005; pp. 146–153. [Google Scholar]
- Alem, P.; Thomas, P.A.; van Iersel, M.W. Substrate water content and fertilizer rate affect growth and flowering of potted petunia. HortScience 2015, 50, 582–589. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates Incorporated: Sunderland, MA, USA, 2015; ISBN 978-1-60535-353-1. [Google Scholar]
- Cabrera-Bosquet, L.; Molero, G.; Stellacci, A.; Bort, J.; Nogués, S.; Araus, J. NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal Res. Commun. 2011, 39, 147–159. [Google Scholar] [CrossRef]
- Edalat, M.; Naderi, R.; Egan, T.P. Corn nitrogen management using NDVI and SPAD sensor-based data under conventional vs. reduced tillage systems. J. Plant Nutr. 2019, 42, 2310–2322. [Google Scholar] [CrossRef]
- Kim, C.; van Iersel, M.W. Morphological and physiological screening to predict lettuce biomass production in controlled environment agriculture. Remote Sens. 2022, 14, 316. [Google Scholar] [CrossRef]
- Smith, B.R.; Fisher, P.R.; Argo, W.R. Growth and pigment content of container-grown impatiens and petunia in relation to root substrate pH and applied micronutrient concentration. HortScience 2004, 39, 1421–1425. [Google Scholar] [CrossRef]
- Rogovska, N.; Blackmer, A.M. Remote sensing of soybean canopy as a tool to map high pH, calcareous soils at field scale. Precis. Agric. 2009, 10, 175–187. [Google Scholar] [CrossRef]
- Lucas, R.E.; Davis, J.F. Relationsips between pH values of organic soils and availibilites of 12 plant nutrients. Soil Sci. 1961, 92, 177. [Google Scholar] [CrossRef]
- Shenker, M.; Plessner, O.E.; Tel-Or, E. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J. Plant Physiol. 2004, 161, 197–202. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dąbrowski, P.; et al. Frequently Asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res. 2014, 122, 121–158. [Google Scholar] [CrossRef]
- Hardy, J.; Behe, B.K.; Barton, S.S.; Page, T.J.; Schutzki, R.E.; Muzii, K.; Fernandez, R.T.; Haque, M.T.; Brooker, J.; Hall, C.R.; et al. Consumers preferences for plant size, type of plant material and design sophistication in residential landscaping. J. Environ. Hortic. 2000, 18, 224–230. [Google Scholar] [CrossRef]
- Frydenvang, J.; Van Maarschalkerweerd, M.; Carstensen, A.; Mundus, S.; Schmidt, S.B.; Pedas, P.R.; Laursen, K.H.; Schjoerring, J.K.; Husted, S. Sensitive detection of phosphorus deficiency in plants using chlorophyll fluorescence. Plant Physiol. 2015, 169, 353–361. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wacker, K.; Kim, C.; van Iersel, M.W.; Haidekker, M.; Seymour, L.; Ferrarezi, R.S. Validation of In-House Imaging System via Code Verification on Petunia Images Collected at Increasing Fertilizer Rates and pHs. Sensors 2024, 24, 5809. https://doi.org/10.3390/s24175809
Wacker K, Kim C, van Iersel MW, Haidekker M, Seymour L, Ferrarezi RS. Validation of In-House Imaging System via Code Verification on Petunia Images Collected at Increasing Fertilizer Rates and pHs. Sensors. 2024; 24(17):5809. https://doi.org/10.3390/s24175809
Chicago/Turabian StyleWacker, Kahlin, Changhyeon Kim, Marc W. van Iersel, Mark Haidekker, Lynne Seymour, and Rhuanito Soranz Ferrarezi. 2024. "Validation of In-House Imaging System via Code Verification on Petunia Images Collected at Increasing Fertilizer Rates and pHs" Sensors 24, no. 17: 5809. https://doi.org/10.3390/s24175809
APA StyleWacker, K., Kim, C., van Iersel, M. W., Haidekker, M., Seymour, L., & Ferrarezi, R. S. (2024). Validation of In-House Imaging System via Code Verification on Petunia Images Collected at Increasing Fertilizer Rates and pHs. Sensors, 24(17), 5809. https://doi.org/10.3390/s24175809